

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - II

Subject : MATHEMATICS

Paper : C 3 - T

[REAL ANALYSIS]

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

1. Answer any *five* questions :

 $2 \times 5 = 10$

(a) Define least upper bound of a bounded set and obtain it for the set

 $A = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$

(b) Define point of accumulation of a set and find all the points of accumulation of

the set $E = \left\{ \frac{1}{m} + \frac{1}{n} / m, n = 1, 2, 3, \dots \right\}.$

(c) Prove that if A and B are two closed sets, then $A \cup B$ and $A \cap B$ are both closed sets.

P.T.O.

- (2)
- (d) Show that $\left\{\frac{3n+1}{n+2}\right\}$ is a bounded sequence.
- (e) Prove that every convergent sequence is bounded. Is the converse true? Justify.

(f) Prove that the Series
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 converges.

(g) If
$$\sum_{n=1}^{\infty} a_n$$
 is a convergent series, then prove that $\lim_{n \to \infty} a_n = 0$.

(h) Define compact set with an example.

2. Answer any *four* questions :

5×4=20

- (a) Define countability of a set. Show that the set of all real numbers is not countable.
- (b) State and prove Archimedean property of real numbers.
- (c) If a set S is open, then prove that its complement is a closed set. Is the converse true? Justify.
- (d) Define Cauchy Sequence. Prove that the sequence $\{n^2\}$ is not a Cauchy Sequence.
- (e) Prove that every bounded sequence has a convergent subsequence.
- (f) Prove that $1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$ converges.

3. Answer any *three* questions :

(a) What do you mean by convergence, absolute convergence and conditional convergence of a series of real numbers? Prove that absolutely convergence imply convergence. Classify as to divergent, conditionally convergent or absolutely of the following series :

(i)
$$1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots$$

P.T.O

 $10 \times 3 = 30$

(ii)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

(iii)
$$\frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \dots$$
 $3 + 1 + 6$

- (b) If a sequence $\{x_n\}$ of real numbers is monotonic increasing and bounded above, then prove that it converges to its exact upper bound. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ is monotonic increasing and bounded above. 5+5
- (c) (i) State and prove Bolzano-Weierstrass theorem for sequences.
 - (ii) Using Cauchy's general principle of convergence prove that $\{x_n\}$, where

$$x_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \cdot \frac{1}{n}$$
, is a convergent sequence. 5+5

- (d) (i) State and prove Heine-Borel theorem. Give an illustration which justify Heine-Borel theorem.
 - (ii) State and prove density property of real numbers. 4+3+3
- (e) (i) Examine if the following series converge :

(i)
$$\sum_{n=1}^{\infty} \frac{n+1}{10^{10}(n+2)}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$ (iii) $\sum_{n=1}^{\infty} \log\left(1+\frac{1}{n}\right)$

(ii) Given $0 < x_1 < x_2$. If each $x_n = \frac{x_{n-1} + x_{n-2}}{2}$, then prove that $\{x_n\} \to \frac{1}{3}(x_1 + 2x_2)$ as $n \to \infty$. 6+4