
(d) Show that $\left\{\frac{3 n+1}{n+2}\right\}$ is a bounded sequence.
(e) Prove that every convergent sequence is bounded. Is the converse true? Justify.
(f) Prove that the Series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges.
(g) If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
(h) Define compact set with an example.
2. Answer any four questions :
(a) Define countability of a set. Show that the set of all real numbers is not countable.
(b) State and prove Archimedean property of real numbers.
(c) If a set S is open, then prove that its complement is a closed set. Is the converse true? Justify.
(d) Define Cauchy Sequence. Prove that the sequence $\left\{n^{2}\right\}$ is not a Cauchy Sequence.
(e) Prove that every bounded sequence has a convergent subsequence.
(f) Prove that $1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots \ldots$. converges.
3. Answer any three questions :
(a) What do you mean by convergence, absolute convergence and conditional convergence of a series of real numbers? Prove that absolutely convergence imply convergence. Classify as to divergent, conditionally convergent or absolutely of the following series :
(i) $1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots$.
(ii) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots .$.
(iii) $\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\ldots .$.
(b) If a sequence $\left\{x_{n}\right\}$ of real numbers is monotonic increasing and bounded above, then prove that it converges to its exact upper bound. Prove that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is monotonic increasing and bounded above.
(c) (i) State and prove Bolzano-Weierstrass theorem for sequences.
(ii) Using Cauchy's general principle of convergence prove that $\left\{x_{n}\right\}$, where $x_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots . .+(-1)^{n-1} \cdot \frac{1}{n}$, is a convergent sequence. $5+5$
(d) (i) State and prove Heine-Borel theorem. Give an illustration which justify Heine-Borel theorem.
(ii) State and prove density property of real numbers.
(e) (i) Examine if the following series converge :
(i) $\sum_{n=1}^{\infty} \frac{n+1}{10^{10}(n+2)}$
(ii) $\sum_{n=1}^{\infty} \frac{n+1}{n+2}$
(iii) $\sum_{n=1}^{\infty} \log \left(1+\frac{1}{n}\right)$
(ii) Given $0<x_{1}<x_{2}$. If each $x_{n}=\frac{x_{n-1}+x_{n-2}}{2}$, then prove that $\left\{x_{n}\right\} \rightarrow \frac{1}{3}\left(x_{1}+2 x_{2}\right)$ as $n \rightarrow \infty$. 6+4

