

Question Paper

B.Sc. Honours Examination 2022

(Under CBCS Pattern)

Semester - VI

Subject : MATHEMATICS

Paper : C 14 - T

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[RING THEORY AND LINEAR ALGEBRA-II]

1. Answer any *five* questions :

2×5=10

- (a) Show that $1 + \sqrt{-5}$ is irreducible element in $Z(\sqrt{-5})$.
- (b) Let *a*, *b* be two nonzero elements of an Euclidean domain *R*. If *b* is not a unit in *R*, then prove that d(a) < d(ab).
- (c) Give an example (with justification) of a division ring which is not a field.
- (d) Determine all the associates of [8] in the ring \mathbb{Z}_{10} .
- (e) Give an example of a linear operator T on a finite dimensional vector space V over a field F such that T is not diagonalizable.

- (f) Find the *dual basis* of the basis $\{(1, 1, 2), (1, 0, 1), (2, 1, 0)\}$ of the vector space \mathbb{R}^3 .
- (g) If a real symmetric matrix is positive definite then show that all its eigen values are positive.
- (h) If $T \in A(V)$ and S is regular in A(V), prove that T and STS^{-1} have same minimal polynomial, where A(V) is the annihilator of V.

2. Answer any *four* questions :

- (a) (i) Prove that 1 and -1 are the only units of the ring $\mathbb{Z}\sqrt{-5}$
 - (ii) Show that the integral domain $\mathbb{Z}\sqrt{-5}$ is a factorization domain. 3+2=5
- (b) Find *gcd* of 11 + 7i and 18 i in Z + iZ.
- (c) Let $T: V \to V$ be a linear mapping, where V is a Euclidean space. Show that T is orthogonal if and only if T maps an orthogonal basis to an orthonormal basis.
- (d) Let V be a finite dimensional vector space over the field F and T be a diagonalizable linear operator on V. Let $\{c_1, c_2, ..., c_k\}$ be the set of all distinct eigen values of T. Then prove that the characteristic polynomial of T is of the form $(x-c_1)^{d_1}(x-c_2)^{d_2}...(x-c_k)^{d_k}$ for some positive integers $d_1, d_2, ..., d_k$.
- (e) (i) Let *T* be a linear operator on a finite dimensional vector space *V* over *F*. Define minimal polynomial of *T*.
 - (ii) If *V* is finite dimensional over *F*, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial of *T* is not 0, where A(V) is the annihilator of *V*. 1+4
- (f) Find the eigen values and bases for the eigen space of the matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}$.

Is A diagonalizable?

- 3. Answer any *three* questions :
 - (a) (i) Let *R* be a PID. Prove that *p* is irreducible in *R* if and only if the ideal generated by *p* is a non-zero maximal ideal. Hence show that $\mathbb{Q}[x]/\langle x^2-2\rangle$ is a field.
 - (ii) Prove that for any linear operator *T* on a finite-dimensional inner product space *V*, there exists a unique linear operator *T** on *V* such that $< T\alpha, \beta > = <\alpha, T*\beta >$ for all $\alpha, \beta \in V$. (4+2)+4=10
 - (b) (i) Let N be a 2 × 2 complex matrix such that $N^2 = 0$. Then prove that either N = 0 or N is similar to the matrix $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ over \mathbb{C} .
 - (ii) Use Gram-Schmidt process to obtain an orthonormal basis from the following basis B = { (1, 2, -2), (2, 0, 1), (1, 1, 0)} of ℝ³ with the standard inner product.

(c) (i) Show that an element x in a Euclidean domain is a unit if and only if d(x) = d(1). Hence find all units in the ring Z + iZ of Gaussian integers.

(ii) Define unique factorization domain (UFD). Show that $R = \{a + b\sqrt{-5} \mid a, b \in Z\}$ is not UFD. 6+4

- (d) (i) Consider the polynomial $f(x) = 5x^4 + 4x^3 6x^2 14x + 2$ in $\mathbb{Z}[x]$. Using Eisenstein's criterion show that f(x) is irreducible in \mathbb{Z} .
 - (ii) Let $A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$. Find its minimal polynomial over \mathbb{R} and hence

check whether A is similar to a diagonal matrix or not.

(iii) Consider the inner product space \mathbb{C}^2 over \mathbb{C} with the standard inner product. Let *T* be a linear operator on \mathbb{C}^2 such that the matrix representation of *T* with respect to the standard ordered basis is $A = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$. Show that *T* is a normal operator. 3+(3+1)+3=10 (e) (i) Let a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

T(x, y, z) = (2x + y - 2z, 2x + 3y - 4z, x + y - z). Find all eigen values of *T* and find a basis of each eigen space.

(ii) The matrix of a linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the standard basis

is $\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{vmatrix}$. Find f and its matrix with respect to the basis $\{(0,1,-1),(1,-1,1),(-1,1,0)\}$. 5+5