
(f) Find the dual basis of the basis $\{(1,1,2),(1,0,1),(2,1,0)\}$ of the vector space \mathbb{R}^{3}.
(g) If a real symmetric matrix is positive definite then show that all its eigen values are positive.
(h) If $T \in A(V)$ and S is regular in $A(V)$, prove that T and $S T S^{-1}$ have same minimal polynomial, where $A(V)$ is the annihilator of V.
2. Answer any four questions:
(a) (i) Prove that 1 and -1 are the only units of the ring $\mathbb{Z} \sqrt{-5}$.
(ii) Show that the integral domain $\mathbb{Z} \sqrt{-5}$ is a factorization domain. $3+2=5$
(b) Find $g c d$ of $11+7 i$ and $18-i$ in $Z+i Z$.
(c) Let $T: V \rightarrow V$ be a linear mapping, where V is a Euclidean space. Show that T is orthogonal if and only if T maps an orthogonal basis to an orthonormal basis.
(d) Let V be a finite dimensional vector space over the field F and T be a diagonalizable linear operator on V. Let $\left\{c_{1}, c_{2}, \ldots \ldots, c_{k}\right\}$ be the set of all distinct eigen values of T. Then prove that the characteristic polynomial of T is of the form $\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \ldots .\left(x-c_{k}\right)^{d_{k}}$ for some positive integers $d_{1}, d_{2}, \ldots ., d_{k}$.
(e) (i) Let T be a linear operator on a finite dimensional vector space V over F. Define minimal polynomial of T.
(ii) If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial of T is not 0 , where $A(V)$ is the annihilator of V. $1+4$
(f) Find the eigen values and bases for the eigen space of the matrix $A=\left(\begin{array}{rrr}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right)$. Is A diagonalizable?
3. Answer any three questions :
(a) (i) Let R be a PID. Prove that p is irreducible in R if and only if the ideal generated by p is a non-zero maximal ideal. Hence show that $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$ is a field.
(ii) Prove that for any linear operator T on a finite-dimensional inner product space V, there exists a unique linear operator T^{*} on V such that $\langle T \alpha, \beta\rangle=\left\langle\alpha, T^{*} \beta\right\rangle$ for all $\alpha, \beta \in V$.
$(4+2)+4=10$
(b) (i) Let N be a 2×2 complex matrix such that $N^{2}=0$. Then prove that either $N=$ 0 or N is similar to the matrix $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ over \mathbb{C}.
(ii) Use Gram-Schmidt process to obtain an orthonormal basis from the following basis $\mathcal{B}=\{(1,2,-2),(2,0,1),(1,1,0)\}$ of \mathbb{R}^{3} with the standard inner product. $\quad 4+6=10$
(c) (i) Show that an element x in a Euclidean domain is a unit if and only if $d(x)=d(1)$. Hence find all units in the ring $Z+i Z$ of Gaussian integers.
(ii) Define unique factorization domain (UFD). Show that $R=\{a+b \sqrt{-5} \mid a, b \in Z\}$ is not UFD.
(d) (i) Consider the polynomial $f(x)=5 x^{4}+4 x^{3}-6 x^{2}-14 x+2$ in $\mathbb{Z}[x]$. Using Eisenstein's criterion show that $f(x)$ is irreducible in \mathbb{Z}.
(ii) Let $A=\left(\begin{array}{ccc}0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0\end{array}\right)$. Find its minimal polynomial over \mathbb{R} and hence check whether A is similar to a diagonal matrix or not.
(iii) Consider the inner product space \mathbb{C}^{2} over \mathbb{C} with the standard inner product. Let T be a linear operator on \mathbb{C}^{2} such that the matrix representation of T with respect to the standard ordered basis is $A=\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$. Show that T is a normal operator.
$3+(3+1)+3=10$
(e) (i) Let a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by
$T(x, y, z)=(2 x+y-2 z, 2 x+3 y-4 z, x+y-z)$. Find all eigen values of T and find a basis of each eigen space.
(ii) The matrix of a linear mapping $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to the standard basis is $\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right|$. Find f and its matrix with respect to the basis $\{(0,1,-1),(1,-1,1),(-1,1,0)\}$.

