

Question Paper

B.Sc. Honours Examination 2022

(Under CBCS Pattern)

Semester - VI

Subject : MATHEMATICS

Paper : C 13 - T

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[METRIC SPACES AND COMPLEX ANALYSIS]

Group - A

1. Answer any *five* questions :

2×5=10

- (a) Let A = {(x, y): x, y ∈ ℝ, x ∉ Q or y ∉ Q}. Examine whether A is compact or not in ℝ² with the usual metric.
- (b) Consider \mathbb{R}^2 with the usual metric. Examine whether the set

$$A = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 : 0 < x < 1 \right\} \text{ is connected or not.}$$

- (c) Define finite intersection property. Does the collection $A = \{(n-1, n+1) : n \in Z\}$ of open in intervals satisfy finite intersection property? Justify.
- (d) Show that every Cauchy sequence in a metric space is bounded.

(e) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} (4+3i)^n z^n$.

- (f) Let $T(z) = \frac{az+b}{cz+d}$ be a bilinear transformation. Show that ∞ is a fixed point of T if and only if c = 0.
- (g) Let $f'(z) = 2x + ixy^2$ where z = x + iy. Show that f'(z) does not exist at any point of z-plane.
- (h) Show that $f(z) = e^{-|z|^4} + z + 5$ is not differentiable at any non-zero point.

2. Answer any *four* questions :

- (a) (i) Prove that a metrix space (X, d) having the property that every continuous map $f: X \to X$ has a fixed point, is connected. 2
 - (ii) Let (X, d) be a complete metric space and $T: X \to X$ be a contraction on X. Then for $x \in X$, show that the sequence $\{T^n(x)\}$ is a convergent sequence. 3

 $5 \times 4 = 20$

5

- (b) Let (X, d_1) and (Y, d_2) be two metric spaces and $f: (X, d_1) \rightarrow (Y, d_2)$ be uniformly continuous. Show that if $\{x_n\}$ is a Cauchy sequence in (X, d_1) then so is $\{f(x_n)\}$ in (Y, d_2) . Is it true if *f* is only continuous? Justify. 3+2
- (c) Show that continuous image of a compact metric space is compact.
- (d) Let f(z) = u + iv be analytic in a domain *D*. Prove that *f* is constant in *D* if and only if one of the following holds :
 - (i) f'(z) vanishes in D.

(ii)
$$Ref(z) = u = constant$$
.

3.

(4)

show that $d(x, x_0) \leq \frac{1}{1-t} d(x, f(x))$, for all $x \in X$.

- (iii) Show that a contraction of a bounded plane set may have the same diameter as the set itself.
- (c) (i) Let f(z) = u(x, y) + iv(x, y), z = x + iy and $z_0 = x_0 + iy_0$. Let the function f be defined in a domain D except possible at the point z_0 in D. Then prove that $\lim_{z \to 0} f(z) = u_0$ if and only if $\lim_{x \to x_0} u(x, y) = u_0$ and $\lim_{y \to y_0} v(x, y) = v_0$.
 - (ii) If f(z) = u(x, y) + iv(x, y) is an analytic function of z = x + iy and

$$u(x,y)-v(x,y) = \frac{e^{y}-\cos x+\sin x}{\cosh y-\cos x}$$
 find $f(z)$ subject to the condition

$$f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}.$$
 5+5

(d) (i) Suppose f(z) is analytic in a domain Ω and $C = \{z : |z-a| = R\}$ contained in

Ω. Then prove that
$$\left|f^{n}(a)\right| \leq \frac{n!M_{R}}{R^{n}}, n = 0, 1, 2, \dots$$

where $M_R = \max_{z \in C} |f(z)|$.

(ii) Show that every bounded entire function is constant.

(iii) Let $p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$, $a_n \neq 0$. Show that there exists a point z_0 in C such that $p(z_0) = 0$. 3+3+4

(e) (i) Show that when
$$0 < |z| < 4$$
, $\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$

(ii) Find the Laurent series that represents the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ in the domain $0 < |z| < \infty$. 5+5