
(c) Define finite intersection property. Does the collection $A=\{(n-1, n+1): n \in Z\}$ of open in intervals satisfy finite intersection property? Justify.
(d) Show that every Cauchy sequence in a metric space is bounded.
(e) Find the radius of convergence of the power series $\sum_{n=1}^{\infty}(4+3 i)^{n} z^{n}$.
(f) Let $T(z)=\frac{a z+b}{c z+d}$ be a bilinear transformation. Show that ∞ is a fixed point of T if and only if $c=0$.
(g) Let $f^{\prime}(z)=2 x+i x y^{2}$ where $z=x+i y$. Show that $f^{\prime}(z)$ does not exist at any point of z-plane.
(h) Show that $f(z)=e^{-|z|^{4}}+z+5$ is not differentiable at any non-zero point.
2. Answer any four questions :
(a) (i) Prove that a metrix space (X, d) having the property that every continuous map $f: X \rightarrow X$ has a fixed point, is connected.
(ii) Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a contraction on X. Then for $x \in X$, show that the sequence $\left\{T^{n}(x)\right\}$ is a convergent sequence. 3
(b) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be two metric spaces and $f:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$ be uniformly continuous. Show that if $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, d_{1}\right)$ then so is $\left\{f\left(x_{n}\right)\right\}$ in $\left(Y, d_{2}\right)$. Is it true if f is only continuous? Justify.
(c) Show that continuous image of a compact metric space is compact.
(d) Let $f(z)=u+i v$ be analytic in a domain D. Prove that f is constant in D if and only if one of the following holds :
(i) $f^{\prime}(z)$ vanishes in D.
(ii) $\operatorname{Ref}(z)=u=$ constant .
(iii) $\operatorname{Imf}(z)=v=$ constant .
(iv) $|f(z)|=$ constant (non zero)

Check the analyticity of $f(z)=\bar{z}$.
(e) Find the domain of convergence of the following series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \ldots \ldots .(2 n-1)}{n!}\left(\frac{1-z}{z}\right)^{n} \tag{5}
\end{equation*}
$$

(f) Evaluate :
(i) $\int_{C}^{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}(z-1)(z-2) \quad$ where C is the circle $|z|=3$ described in the positive sense.
(ii) $\int_{C} \frac{z d z}{\left(9-z^{2}\right)(z+i)}$, where C is the circle $|z|=2$ described in the positive sense.
3. Answer any three questions :
(a) (i) Let (X, d) be a metric space and A be a compact subset of X. Show that A is totally bounded.
(ii) A subset A of a metric space (X, d) is totally bounded if and only if every sequence in A has a Cauchy sequence.
(iii) If \mathcal{F} be a family of compact sets with finite intersection property in a metric space (X, d), then show that $\cap \mathcal{F} \neq \phi$. $2+5+3$
(b) (i) Show that the map $f:[0,1] \rightarrow[0,1]$, defined by $f(x)=x-\frac{x^{2}}{2}, x \in(0,1)$ is a weak contraction but not a contraction map.
(ii) Let (X, d) be a complete metric space and $f: X \rightarrow X$ be a contraction map with Lipschitz constant $t(0<t<1)$. If $x_{0} \in X$ is the unique fixed point of f,
show that $d\left(x, x_{0}\right) \leq \frac{1}{1-t} d(x, f(x))$, for all $x \in X$.
(iii) Show that a contraction of a bounded plane set may have the same diameter as the set itself.
(c) (i) Let $f(z)=u(x, y)+i v(x, y), z=x+i y$ and $z_{0}=x_{0}+i y_{0}$. Let the function f be defined in a domain D except possible at the point z_{0} in D. Then prove that $\lim _{z \rightarrow 0} f(z)=u_{0}$ if and only if $\lim _{x \rightarrow x_{0}} u(x, y)=u_{0}$ and $\lim _{y \rightarrow y_{0}} v(x, y)=v_{0}$.
(ii) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function of $z=x+i y$ and $u(x, y)-v(x, y)=\frac{e^{y}-\cos x+\sin x}{\cosh y-\cos x}$ find $f(z)$ subject to the condition $f\left(\frac{\pi}{2}\right)=\frac{3-i}{2}$.
(d) (i) Suppose $f(z)$ is analytic in a domain Ω and $C=\{z:|z-a|=R\}$ contained in Ω. Then prove that $\left|f^{n}(a)\right| \leq \frac{n!M_{R}}{R^{n}}, n=0,1,2, \ldots \ldots$
where $M_{R}=\max _{z \in C}|f(z)|$.
(ii) Show that every bounded entire function is constant.
(iii) Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots . .+a_{n} z^{n}, a_{n} \neq 0$. Show that there exists a point z_{0} in C such that $p\left(z_{0}\right)=0$.
(e) (i) Show that when $0<|z|<4, \frac{1}{4 z-z^{2}}=\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}$.
(ii) Find the Laurent series that represents the function $f(z)=z^{2} \sin \left(\frac{1}{z^{2}}\right)$ in the domain $0<|z|<\infty$. $5+5$

