B.Sc./5th Sem (H)/MATH/22(CBCS)

2022

5th Semester Examination MATHEMATICS (Honours)

Paper: C 11-T

[Partial Differential Equations and Applications]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

2×10=20

- (a) What is ballistics? Write different types of ballistics.
- (b) Define quasi-linear and semi-linear partial differential equation.
- (c) Find the general solution of second order PDE $4\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = 0.$
- (d) What is the nature of the second order PDE

$$\frac{\partial^2 z}{\partial y^2} - y \frac{\partial^2 z}{\partial x^2} + x^3 z = 0?$$

P.T.O.

V-5/41 - 2000

2)

(e) Let $a, b \in \mathbb{R}$ be such that $a^2 + b^2 \neq 0$. Then prove that the Cauchy problem $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$,

 $x, y \in \mathbb{R}$ with z(x, y) = x on ax + by = 1 has a unique solution.

- (f) Find the characteristic curve of PDE: $2y\frac{\partial z}{\partial x} + (2x + y^2)\frac{\partial z}{\partial y} = 0 \text{ which is passing through the point } (0,0).$
- (g) Find the equations of the characteristic curves of the PDE $(x^2 + 2y)\frac{\partial^2 z}{\partial x^2} + (y^3 y + x)\frac{\partial^2 z}{\partial y^2}$

 $+x^{2}(y-1)\frac{\partial^{2}z}{\partial x\partial y}+3\frac{\partial z}{\partial x}+z=0$ which are passing through the point x=1, y=1.

(h) Let z(x, t) be the equation of $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial t^2}$ with

 $z(x, 0) = \cos(5\pi x)$ and $\frac{\partial z}{\partial t}(x, 0) = 0$. Then prove that z(1, 1) = 1.

(i) Show that the solution of the PDE $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$ is of the form f(y/x).

(3

- (j) Prove that the partial differential equation $x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial y^2} = 0$ is elliptic type for x < 0, y > 0.
- (k) Find the two families of surfaces that generate the characteristics of $(3y-2z)\frac{\partial z}{\partial x} + (z-3x)\frac{\partial z}{\partial x}$ = 2x-y.
- (1) Find the partial differential equation by eliminating arbitrary constants a and b from z = (x+a)(y+b).
- (m) Define apsidal angle and apsidal distance.
- (n) Prove that a planet has only a radial acceleration towards the Sun.
- (o) Prove that at an apse on a central orbit, the velocity is proportional to the reciprocal of the radius vector.

Group - B

2. Answer any four questions:

5×4=2

(a) A particle moves with a central acceleration $\mu \div (\text{distance})^2$; it is projected with velocity ν at a distance \mathbb{R} . Show that its path is a rectangular hyperbola if the angle of projection is

$$\sin^{-1}\left[\mu / \left\{ VR \left(V^2 - \frac{2\mu}{R}\right)^{1/2} \right\} \right].$$

T.O.

^ 4)

A spherical raindrop falls through a cloud while accumulating mass at a rate λr^2 where r is its radius and $\lambda > 0$. Find its velocity at time t if it starts from rest with radius a.

- (c) Find the integral surface of the PDE, x(z+2a)p + (xz+2yz+2ay)q = z(z+a).
- (d) Using the method of separation of variables, solve:

$$\frac{\partial z}{\partial x} = q \frac{\partial z}{\partial t} + z$$
 where $z(x, 0) = 6e^{-3x}$.

- (e) Reduce the wave equation $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$ to canonical form.
- (f) Solve $z^2 = pqxy$ by Charpit's method.

Group - C

- 3. Answer any two questions:
- 10×2=20
- (a) (i) If a point moves on a Curve with constant tangential acceleration such that the magnitudes of the tangential velocity and normal acceleration are in a constant ratio, find the (s, ψ) equation of the curve.
- (ii) Solve $(D^3 3DD'^2 2D'^3)z = \cos(x + 2y)$.
- (b) (i) A particle is projected with velocity V from

the cusp of a smooth inverted cycloid down the arc, show that the time of reaching the

vertex is
$$2\sqrt{\frac{a}{g}} \tan^{-1} \left[\sqrt{\frac{4ag}{V}} \right]$$
.

(ii) Using the method of separation of variables, solve the following wave equation described by

PDE:
$$\frac{\partial^2 z}{\partial t^2} = 4 \frac{\partial^2 z}{\partial x^2}$$

BCS:
$$z(0,t)=0$$
, $z(s,t)=0$

ICS:
$$z(x, 0) = 0$$
, $\left(\frac{\partial z}{\partial t}\right)_{t=0} = 5 \sin \pi x$. 5+5

(c) (i) Solve the boundary value problem $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad u(x, 0) = 20, \quad u(0, t) = 0,$ u(L, t) = 0.

(ii) Find the integral surface of the linear PDE $2y(z-3)\frac{\partial z}{\partial x} + (2x-z)\frac{\partial z}{\partial y} = y(2x-3) \text{ which}$

passes through the circle $x^2 + y^2 = 2x$, z = 0. 5+5

(i) Solve two dimensional Laplace's equation

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

with BCS
$$z(0, y) = 0$$
, $z(l, y) = 0$

and
$$z(x, y) \to 0$$
 as $y \to \infty$

$$z(x,0) = f(x)$$

(ii) Let u(x, y) be the solution of the Cauchy

problem
$$\frac{\partial u}{\partial y} - x \frac{\partial u}{\partial x} + u = 1$$
, where

$$-\infty < x < \infty$$
, $y \ge 0$ and $u(x, 0) = \sin x$, then find $u(0, 1)$.