
(f) Determine the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ over \mathbb{R} such that T sends the vectors $(1,0,0),(0,1,0),(0,0,1)$ to $(0,1,0),(0,0,1),(1,0,0)$, respectively.
(g) Show that the mapping $f: \mathbb{Z} \sqrt{2} \rightarrow M_{2}(\mathbb{R})$ (where $M_{2}(\mathbb{R})$ denotes the ring of all 2 $\times 2$ real matrices) defined by $f(a+b \sqrt{2})=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$ is a homomorphism of rings.
(h) Give an example of a linear operator T on a vector space V such that ker $T=\operatorname{Im} T$.
2. Answer any four questions :
(a) Let I denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term of the form $4 k(k \in \mathbb{Z})$. Show that I is an ideal of $\mathbb{Z}[x]$. Is it a prime ideal? Is it a maximal ideal? Give proper justification in support of your answer.
(b) Let V be a vector space over the field F and $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}\right\}$ be a basis for V. Let $\beta \in V$ be a non-null vector such that $\beta=c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots .+c_{n} \alpha_{n}$ for some $c_{1}, c_{2}, \ldots \ldots, c_{n} \in F$ where $c_{k} \neq 0$ for some $1 \leq k \leq n$. Then show that $\left\{\alpha_{1}, \alpha_{2}, \ldots ., \alpha_{k-1}, \beta, \alpha_{k+1}, \ldots, \alpha_{n}\right\}$ is also a basis for V.
(c) Let $(F,+,$.$) be a field and u(\neq 0) \in F$. Define multiplication \times in F by $a \times b=a . u . b$ for $a, b \in F$. Prove that $(F,+, \times)$ is a field.
(d) Find a non-identity linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that the $T(W)=W$ where $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
(e) Let R be a ring and S be a non-empty subset of R. Show that $M=\{a \in R \mid a x=0$ for all $x \in S\}$ is a left ideal of R. Give an example to show that M need not be always an ideal of R. $2+3=5$
(f) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by $T(a, b, c)=(a+b, 2 c-a)$ for all $(a, b, c) \in \mathbb{R}^{3}$. Find the matrix representation of T relative to the pair of bases $B=\{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B^{\prime}=\{(0,1),(1,0)\}$.
3. Answer any three questions :
(a) (i) Let R be the ring of all continuous function from \mathbb{R} to \mathbb{R}. Show that $A=\{f \in R \mid f(0)=0\}$ is a maximal ideal of R.
(ii) Check whether the rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$ is isomorphic.
(iii) Let V be a real vector space with three subspaces P, Q, R satisfying $V=P \cup Q \cup R$. Prove that at least one of P, Q, R must be V itself.

$$
3+3+4=10
$$

(b) (i) Let I and J be two ideals of a ring R. Find the smallest ideal of R containing both I and J.
(ii) Give an example to show that quotient ring of an integral domain is not always an integral domain.
(iii) The matrix of a linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with respect to the ordered basis $B=\{(-1,1,1),(1,-1,1),(1,1,-1)\}$ is $A=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1\end{array}\right)$. Find the matrix of T with respect to the ordered basis $B_{1}=\{(0,1,1),(1,0,1),(1,1,0)\}$.

$$
3+2+5=10
$$

(c) (i) Let $S=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, \operatorname{gcd}(a, b)=1\right.$ and 3 does not divide $\left.b\right\}$. Show that S is a ring under usual addition and multiplication of rational numbers. Also prove that $M=\left\{\left.\frac{a}{b} \in S \right\rvert\, 3\right.$ divides $\left.a\right\}$ is an ideal of S and the quotient ring S / M is a field.
(ii) Let V, W be two finite dimensional vector spaces over the same field $F, T: V \rightarrow W$ be a linear transformation. Then prove that following are equivalent : (A) T carries each linearly independent subset of V to a linearly independent subset of W. (B) $\operatorname{ker} T=\{\theta\}$.

$$
(2+2+2)+4=10
$$

(d) (i) Prove that the ring Z_{n} is s principal ideal ring.
(ii) Find all non-trivial ring homomorphisms from the ring \mathbb{Z}_{12} to the ring \mathbb{Z}_{28}.
(iii) Let U, V, W be three finite dimensional vector spaces over the field $F, T: V \rightarrow W$ be a linear transformation and $S: W \rightarrow U$ be an isomorphism. Then prove that (A) $\operatorname{dim} \operatorname{ker} T=\operatorname{dim} \operatorname{ker} S T$ and (B) dim $\operatorname{Im} T=\operatorname{dim} \operatorname{Im} S T$.
(e) (i) In a commutative ring R with unity, then show that an ideal P is a prime ideal if and only if the quotient ring $\frac{R}{P}$ is an integral domain.
(ii) Give an example of an infinite ring with finite characteristic.
(iii) Let U and W be two subspaces of a vector space V over the field F. Prove that $U \cup W$ is a subspace of V if and only if either $U \subseteq W$ or $W \subseteq U$.

