

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject : MATHEMATICS

Paper : C 10 - T

Ring Theory and Linear Algebra - I

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

- 1. Answer any *five* questions :
 - (a) Let X be any set and R be the power set of X. Does $(R, +, \cdot)$ form a ring where $A + B = A \cup B$ and $A \cdot B = A \cap B$ for all $A, B \in R$.
 - (b) Extend $S = \{(1,1,0), (1,1,1)\}$ to a basis of the vector space \mathbb{R}^3 over \mathbb{R} .
 - (c) Find the total number of units in the ring $M_2(Z_3)$, with usual notations.
 - (d) Let V be a vector space over the field F and W_1 , W_2 be two subspaces of V. Is $W_1 \cup W_2$ a subspace of V?
 - (e) In the ring $M_2(\mathbb{Z})$ of all 2×2 matrices over \mathbb{Z} , check whether the set $\left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} | a, b \in \mathbb{Z} \right\}$ forms an ideal or not. P.T.O.

2×5=10

- (2)
- (f) Determine the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ over \mathbb{R} such that T sends the vectors (1,0,0), (0,1,0), (0,0,1) to (0,1,0), (0,0,1), (1,0,0), respectively.
- (g) Show that the mapping $f : \mathbb{Z}\sqrt{2} \to M_2(\mathbb{R})$ (where $M_2(\mathbb{R})$ denotes the ring of all 2 × 2 real matrices) defined by $f(a+b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$ is a homomorphism of rings.
- (h) Give an example of a linear operator T on a vector space V such that ker T = Im T.

5×4=20

- 2. Answer any *four* questions :
 - (a) Let *I* denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term of the form $4k(k \in \mathbb{Z})$. Show that *I* is an ideal of $\mathbb{Z}[x]$. Is it a prime ideal? Is it a maximal ideal? Give proper justification in support of your answer. 2+2+1=5
 - (b) Let V be a vector space over the field F and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis for V. Let $\beta \in V$ be a non-null vector such that $\beta = c_1\alpha_1 + c_2\alpha_2 + ... + c_n\alpha_n$ for some $c_1, c_2, ..., c_n \in F$ where $c_k \neq 0$ for some $1 \le k \le n$. Then show that $\{\alpha_1, \alpha_2, ..., \alpha_{k-1}, \beta, \alpha_{k+1}, ..., \alpha_n\}$ is also a basis for V. 5
 - (c) Let (F, +, .) be a field and u(≠0) ∈ F. Define multiplication × in F by a×b=a.u.b
 for a, b ∈ F. Prove that (F, +, ×) is a field.
 - (d) Find a non-identity linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that the T(W) = Wwhere $W = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$.
 - (e) Let R be a ring and S be a non-empty subset of R. Show that $M = \{a \in R \mid ax = 0 \text{ for all } x \in S\}$ is a left ideal of R. Give an example to show that M need not be always an ideal of R. 2+3=5
 - (f) Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(a,b,c) = (a+b,2c-a)for all $(a,b,c) \in \mathbb{R}^3$. Find the matrix representation of *T* relative to the pair of bases $B = \{(1,0,-1),(1,1,1),(1,0,0)\}$ and $B' = \{(0,1),(1,0)\}$. P.T.O.

3. Ans	Answer any <i>three</i> questions : $10 \times 3 = 30$	
(a)	(i)	Let <i>R</i> be the ring of all continuous function from \mathbb{R} to \mathbb{R} . Show that $A = \{ f \in R \mid f(0) = 0 \}$ is a maximal ideal of <i>R</i> .
	(ii)	Check whether the rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{2}]$ is isomorphic.
	(iii)	Let V be a real vector space with three subspaces P, Q, R satisfying $V = P \cup Q \cup R$. Prove that at least one of P, Q, R must be V itself. 3+3+4=10
(b)	(i)	Let I and J be two ideals of a ring R . Find the smallest ideal of R containing both I and J .
	(ii)	Give an example to show that quotient ring of an integral domain is not always an integral domain.
	(iii)	The matrix of a linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the ordered
		basis $B = \{(-1,1,1), (1,-1,1), (1,1,-1)\}$ is $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{pmatrix}$. Find the matrix
		of <i>T</i> with respect to the ordered basis $B_1 = \{(0,1,1), (1,0,1), (1,1,0)\}$.
		3+2+5=10
(c)	(i)	Let $S = \{\frac{a}{b} \in \mathbb{Q} \mid \text{gcd} (a, b) = 1 \text{ and } 3 \text{ does not divide } b\}$. Show that <i>S</i> is a
		ring under usual addition and multiplication of rational numbers. Also
		prove that $M = \{\frac{a}{b} \in S \mid 3 \text{ divides } a\}$ is an ideal of S and the quotient ring
		S/M is a field.
	(ii)	Let <i>V</i> , <i>W</i> be two finite dimensional vector spaces over the same field $F, T: V \to W$ be a linear transformation. Then prove that following are equivalent : (A) <i>T</i> carries each linearly independent subset of <i>V</i> to a linearly independent subset of <i>W</i> . (B) ker $T = \{\theta\}$. (2+2+2)+4=10

(d) (i) Prove that the ring Z_n is s principal ideal ring.

P.T.O.

- (ii) Find all non-trivial ring homomorphisms from the ring \mathbb{Z}_{12} to the ring \mathbb{Z}_{28} .
- (iii) Let U, V, W be three finite dimensional vector spaces over the field $F, T: V \rightarrow W$ be a linear transformation and $S: W \rightarrow U$ be an isomorphism. Then prove that (A) dim ker $T = \dim \ker ST$ and (B) dim $\operatorname{Im} T = \dim \operatorname{Im} ST$. 3+3+4=10
- (e) (i) In a commutative ring R with unity, then show that an ideal P is a prime ideal if and only if the quotient ring $\frac{R}{P}$ is an integral domain.
 - (ii) Give an example of an infinite ring with finite characteristic.

52

(iii) Let U and W be two subspaces of a vector space V over the field F. Prove that $U \cup W$ is a subspace of V if and only if either $U \subseteq W$ or $W \subseteq U$.

4 + 2 + 4 = 10