

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2022

(Under CBCS Pattern)

Semester - IV

Subject: CHEMISTRY

Paper: C 8-T

Physical Chemistry - III

Full Marks: 40
Time: 2 Hours

Candiates are required to give their answer in their own words as far as practicable.

The figures in the margin indicate full marks.

Group - A

Answer any *four* questions:

 $5 \times 4 = 20$

- 1. (a) A sample is either glucose or sucrose. How will you confirm the sample by osmotic pressure measurement ?
 - (b) Write down he number of phases, components and degrees of freedom of the following equilibrium.

$$3Fe(s) + 4H_2O(g) = Fe_3O_4(s) + 4H_2(g)$$
 3+2

2. (a) Construct a cell where following reaction occurs.

$$2AgCl(s) + H2(g) = 2Ag(s) + 2HCl(aq)$$

(b) During heating at normal pressure ice melts but dry ice sublimates. Explain. 2+3

 (b) Using Debye Huckel limiting law determine the activity of 0.1 M CaCl₂ solution Debye Huckel constant A = 0.51 2+ 4. (a) How will you confirm a sample as polar or non-polar by molar polarization measurement? (b) Liquids A and B form an ideal solution. In a binary solution of A and B the mol fraction of A is 0.33. Calculate the composition of the vapour in equilibrium with the solution. 2+ 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain. 2+ 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator by Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. 3+ Group - B Answer any two questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The cmf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate AG, AS and AH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system cell is critical solution temperature (C.S.T.)? Explain it for water-phenol system cell is critical solution temperature of a 0.001 molal solution Na₂SO₄. (b) What are the limitations of Debye-Huckel Limiting Law? 	Debye Huckel constant A = 0.51 2. 4. (a) How will you confirm a sample as polar or non-polar by molar polarization measurement? (b) Liquids A and B form an ideal solution. In a binary solution of A and B the molar fraction of A is 0.33. Calculate the composition of the vapour in equilibrium with the solution. 2. 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain 2. 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operated (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any two questions: 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
measurement? (b) Liquids A and B form an ideal solution. In a binary solution of A and B the mol fraction of A is 0.33. Calculate the composition of the vapour in equilibrium wit the solution. 2+ 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain. 2+ 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator. (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. Group - B Answer any two questions: 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example.	measurement? (b) Liquids A and B form an ideal solution. In a binary solution of A and B the monograph fraction of A is 0.33. Calculate the composition of the vapour in equilibrium with the solution. 2. 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain 2. 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operated (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any two questions: 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
fraction of A is 0.33. Calculate the composition of the vapour in equilibrium with the solution. 2+ 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain. 2+ 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator. (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. Group - B Answer any two questions: 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example.	fraction of A is 0.33. Calculate the composition of the vapour in equilibrium with the solution. 2. 5. (a) What is radial distribution function? (b) Boiling point of a solution is generally greater than that of pure solvent. Explain 2. 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operated. (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any two questions: 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
 (b) Boiling point of a solution is generally greater than that of pure solvent. Explain. 2+ 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator. (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. 3+ Group - B Answer any two questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 2 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄. 	(b) Boiling point of a solution is generally greater than that of pure solvent. Explain 2- 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any <i>two</i> questions: 10×2=2 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
2+ 6. (a) Show that the commutator [L², L₂] = 0 where L is angular momentum operator (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. Group - B Answer any two questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄.	6. (a) Show that the commutator $[L^2, L_z] = 0$ where L is angular momentum operator. (b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any <i>two</i> questions: 10×2=2 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
(b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyro equation. Group - B Answer any two questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO ₂ . (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	(b) Melting point of ice decreases with increasing pressure. Explain it using Clapeyr equation. Group - B Answer any <i>two</i> questions: 10×2=2 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+
Group - B Answer any <i>two</i> questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO ₂ . 5 (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 5 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	Group - B Answer any <i>two</i> questions: 10×2=2 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+
 Answer any <i>two</i> questions: 10×2=20 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄. 	 Answer any <i>two</i> questions: 10×2=2 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+
 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure. (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄. 	 7. (a) Derive thermodynamically Raoult's Law of relative lowering of vapour pressure (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
 (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807V at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol systems (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄. 	 (b) The emf of Weston cadmium standard cell is 1.01530V at 20°C and 1.01807 at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule.
at 25°C. Calculate ΔG, ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+2 8. (a) Draw and explain the phase diagram of CO ₂ . (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	at 25°C. Calculate ΔG , ΔS and ΔH for the cell reaction at 25°C. (c) State Gibbs phase rule. 4+4+
 8. (a) Draw and explain the phase diagram of CO₂. (b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na₂SO₄. 	
(b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system (c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	8. (a) Draw and explain the phase diagram of CO ₂ .
(c) Explain the Azeotropic Mixture with example. 9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	
9. (a) Calculate the mean ionic activity coefficient of a 0.001 molal solution Na ₂ SO ₄ .	(b) What is critical solution temperature (C.S.T.)? Explain it for water-phenol system
	(c) Explain the Azeotropic Mixture with example.
(b) What are the limitations of Debye-Huckel Limiting Law?	2 7
	(b) What are the limitations of Debye-Huckel Limiting Law?
(c) Draw and explain conductometric titration plot for KCl and AgNO ₃ reaction. 3	(c) Draw and explain conductometric titration plot for KCl and AgNO ₃ reaction.
(d) How does common ion effect affect pH?	(d) How does common ion effect affect pH?

10. (a) Describe qualitatively the MO and VB treatment of Hydrogen molecule.

Or,

5

Describe qualitatively the procedure of setting up of Schrodinger equation for many electron atom (He). 5

(b) Deduce Duhem-Margulas equation and show that if Raoults law be applicable to one constituent of binary liquid mixture all componnts, it must be applicable to the other constituent.

3+2