
2. (a) What would be the wavelength of emission spectrum when the electron jumps from the level with $n=2$ to ground state of $\mathrm{He}^{+} ?\left(h=6.6 \times 10^{-27} \mathrm{erg}-\mathrm{sec}, m_{e}=9.1 \times 10^{-28} \mathrm{~g}\right.$, $1 \mathrm{erg}=6.24 \times 10^{11} \mathrm{eV}$ )
(b) Find the smallest and largest sized ions from the following:
$\mathrm{H}^{-}, \mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$
Give reason in support of your answer.
3. (a) Calculate Allred-Rochow electronegativity of $Z n$ taking its covalent radius as 125 pm .
(b) What is de Broglie relationship? How de Broglie's equation can be used to explain Bohr's atomic model?
4. (a) Draw the different shapes of Sommerfield's orbits of hydrogen atom for $n=4 . \quad 2 \frac{1}{2}$
(b) Qualitatively compare the first ionization energy of $C a$ and $Z n$, both having $4 s^{2}$ configuration in their valence shell.
5. (a) Determine the ground state term symbol of ' Cr ' atom.
(b) Explain Heisenberg's uncertainty principle with reference to the following expression : $\Delta x \cdot \Delta P_{x} \geq h / 4 \pi$.
(c) What is Pauli's exclusion principle?
6. (a) The electronegativity of $G a$ is greater than of $A l$ - Explain.
(b) Explain Pauling's approach for the determination of ionic radii. Determine the ionic radii of $\mathrm{Na}^{+}$and $F^{-}$ions by this method. (Given internuclear distance $r_{\mathrm{Na}^{+}-F^{-}}$is 231 pm )

## Group - B

Answer any two questions.
7. (a) Arrange the following in the increasing order of Lewis activity. Justify your answer. $\mathrm{SiF}_{4}, \mathrm{SiCl}_{4}, \mathrm{SiBr}_{4}, \mathrm{SiI}_{4}$
(b) What are superacids? How the acidity of such solutions can be measured?
(c) Explain why electron affinity of $\mathrm{Mn}^{3+}$ is greater than that of $\mathrm{Fe}^{3+}$.
(d) What is formal potential? Explain why it is considered more important than standard electrode potential.
8. (a) Calculate the cell potential at $30^{\circ} \mathrm{C}$ from the following half-cell reactions :

$$
\begin{array}{ll}
C o^{2+}(\mathrm{aq})(0.1 \mathrm{M})+2 e=\operatorname{Co}(s) & E_{C O^{2+} / C o}^{\circ}=-0.288 \mathrm{~V} \\
A l(s)=A l^{3+}(\mathrm{aq})(0.1 \mathrm{M})+3 e & E_{A l / A l^{++}}^{\circ}=+1.66 \mathrm{~V}
\end{array}
$$

Given Faraday constant $(F)=96500 \mathrm{C} \mathrm{mol}^{-1}$ and $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{k}^{-1}$.
(b) HgO is added to an aqueous solution of KI . Comment on the change in acidity of the resulting solution.
(c) Calculate the buffer capacity of a buffer medium when 0.05 mole of NaOH is added to 1.0 litre of the buffer solution and the change of pH is from 5.70-5.85.
(d) Arrange the following compounds in the order of increasing $C$ - $F$ bond length with necessary explanation $\mathrm{CF}_{4}, \mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{2} \mathrm{~F}_{2}, \mathrm{CHF}_{3}$.
9. (a) Explain why methyl mercury ion is taken as the standard for comparison of hard and soft characters of acids and bases?
(b) Using Pauling's rule, identify the structural formula that are nearly consistent with the actual $p \mathrm{Ka}$ values - (i) 1.8 for $\mathrm{H}_{3} \mathrm{PO}_{3}$ and (ii) 9.0 for $\mathrm{H}_{3} \mathrm{AsO}_{3}$.
(c) Write down the composition of Zimmermann Reinhardt solution. Explain why this solution is used during redox titration of Fe (II) ion by $\mathrm{KMnO}_{4}$ solution in HCl medium.
(d) Calculate the $E_{0}$ value of $\mathrm{MO}_{2}^{+} / \mathrm{M}^{4+}$ couple in 1 M acid medium from the following diagram :

$$
\mathrm{MO}_{2}^{2+} \xrightarrow{0.97 \text { volt }} \underset{\xrightarrow{\text { L }}}{\substack{\text { MO } \\ \hline \\ \\ \\ 1.01 \text { volts }}} M^{4+} \xrightarrow{1.08 \text { vols }} M^{3+}
$$

10. (a) Construct a Frost diagram of oxygen in acidic solution from the following Latimer diagram :
$\mathrm{O}_{2} \xrightarrow{+0.695 \mathrm{~V}} \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{+1.75 \mathrm{~V}} 2 \mathrm{H}_{2} \mathrm{O}$
Hence, explain the disproportionation or / and comproportionation reaction.
(b) In qualitative group analysis, what is the role of $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$ mixture in the precipitation of group III A cations?
(c) Explain why $\mathrm{BH}_{3} \mathrm{~F}^{-}$and $\mathrm{BF}_{3} \mathrm{H}^{-}$react to from $\mathrm{BF}_{4}^{-}$and $\mathrm{BH}_{4}^{-}$?
(d) Identify the Lewis acid and base in the reaction $I^{-}+I_{2} \rightarrow I_{3}^{-}$. Justify your answer. 2
