2022

1st Semester Examination

CHEMISTRY (Honours)

Paper: C 1-T

(Organic Chemistry-I)

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) The tertiary amine $(CF_3)_3N$ has practically no basic character Explain.
- (b) Explain homoaromaticity with an example.
- (c) What do you mean by pseudoasymmetric centre? Give example.
- (d) Azulene has an unexpectedly high dipole moment— Explain.
- (e) Indicate the symmetry elements present in (i) Allene (ii) (E) 1, 2-dichloroethene.

P.T.O.

12

'(f) Arrange the following compounds in order of increasing heat of hydrogenation with reason: 1-butane, E-2-butane, Z-2-butane.

- (g) Draw the orbital picture for the following compound indicating the state of hybridization in each carbon and oxygen atom : CH_3 -CH=C=O.
- (h) Draw the Sawhorse and Newmann projections for the following compound Butane - 2L, 3D - diol.

Group - B

Answer any four questions:

5×4=20

- 2 (a) Discuss the procedure to resolve a racemic alcohol with suitable example. Outline the reaction steps.
- (b) Define the terms Racemisation and Racemic modification.
- w. (a) Draw all the π -molecular orbital of buta – 1, 3. - diene. Justify their relative energies. Indicate the the ground state of buta-1, 3-diene. lowest unoccupied molecular orbital (LUMO) in highest occupied molecular orbital (HOMO) and
- (b) What are invertomers?
- 4. (a) Predict which of the following compounds is aromatic, anti aromatic or non aromatic?

B

(b) Which C-N bond (a or b) of the following 2 compound has higher bond energy and why?

- (c) Calculate the double bond equivalent (D.B.E) of the following: $C_5H_{12}O$.
- (a) Identify each pair as homomer, enantiomer, diastereomer

P.T.O.

2

4)

(b) Write R/S notation of the following compounds indicating the priority sequence of the groups attached to the chiral centre

- (c) Indicate the type of point group present in vinyl chloride.
- 6. (a) What are the differences between basicity and nucleophilicity? Explain with relevant examples.
- (b) Explain why C_2 - C_3 bond length in propene is smaller than the C-C bond length of propane. 2
- 7. (a) Compare the basic strengths of triethylamine and quinuclidine. 2
- (b) Arrange the order of stability of the following carbocations with proper reason. Benzyl cation, allyl cation, isopropyl cation, tert-butyl cation.

Group - C

Answer any one question:

 $10 \times 1 = 10$

8. (a) A 0.2 M solution of an optically active compound C has an observed rotation in a 10 cm cell of (+) 0.4°. The molecular weight of the compound is 150. What is the specific rotation of C?

(·

(b) "All asymmetric molecules are dissymmetric, but all dissymmetric molecules are not asymmetric" — Justify.

- (c) Both meso-tartaric acid and racemic tartaric acid are optically inactive. State the reason for the optical inactivity in each case.
- (d) Arrange the following compounds in order of increasing acidity. Give reason for your answer.

$$CH_2 = CH\text{-}COOH, CH = C\text{-}COOH,$$

 CH_3CH_2COOH

(e) What are epimers?

(a) Compare the acidities of benzoic acid and salicylic acid.

9.

- (b) Draw all possible stereo isomers of $CH_3CH_2CH(OH)CH = CHCH_2CH_3$ and designate them by (R/S) and (E/Z) notations.
- (c) Which of CH_2Br - CH_2Br and $CH_2(OH)$ - CH_2OH has higher dipole moment. Explain.
- (d) Explain the following term with an example: Chirotopicity.
- (e) Draw as directed

erythro-3-amino-2-butanol (anti form in Sawhorse presentation)