

1. (a) Implement XOR logic gate using NOR Gates.
(b) Prove that :

$$
A B+C(\overline{A B+A C})=A B
$$

(c) Implement $f(A, B, C)=\sum_{m}(0,2,4,6,7)$ using $4: 1$ multiplexer.

$$
4+4+7
$$

2. (a) Simplify the following expression using K-map method and implement the same using logic gates :
$f=\sum(0,2,5,7,8,10,13,15)$
(b) Minimize the following Boolean expresions using Boolean laws.
(i) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\bar{B})$
(ii) $\mathrm{ABC}+\mathrm{A} \bar{B} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}$

$$
(5+5)+5
$$

3. (a) What is encoder?
(b) Design a 8 X 3 Encoder and explain its operation with a truth table.
(c) What is parity generator? Design and explain 8 bit parity generator circuit.

$$
2+6+7
$$

4. (a) What is flip-flop? Compare level clocking and edge triggering.
(b) Design and explain a D-flipflop.
(c) What is the advantage and disadvantage of D-flip-flop?
5. (a) Design and explain a 4 bit ripple up counter.
(b) Design a Gray to Binary code converter.
(c) What is shift-register?
6. Write short notes on any three of the following :
3×5
(a) Digital comparator.
(b) Universal gates.
(c) MOD-10 counter.
(d) J-K master slave flip-flop.
(e) Full adder.
7. (a) Design MOD-7 counter by D-flip flop.
(b) Implement J-K flip flop using SR flip flop.
8. (a) Explain bidirectional shift register.
(b) Design a 1×16 decoder using 1×4 decoders. 8+7

Group - B

Answer any one question. 1×10
9. (a) State associative and distributive low.
(b) Distinguish between sequential and combinational circuit.
(c) What is prime implicant?
10. (a) Define race around condition.
(b) Compare between flipflop and latch.
(c) What is parity checker?
(d) What is gray code?
$2+4+2+2$

(Internal Assessment : 30)

