

1. (a) Show that the set $\{a+b \sqrt{2} ; a, b \in Q\}$ where Q is the set of rational numbers, forms a group with respect to addition.
(b) Simplify the expression by K-map method

$$
\begin{equation*}
x_{1} x_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} x_{3} \tag{8}
\end{equation*}
$$

2. (a) Prove that every proper subgroup of a group of order 6 is commutative.
(b) Show that an integral domain that has a finite number of elements is a field.
3. (a) Solve the recurrance relation
$\mathrm{a}_{\mathrm{r}}+3 \mathrm{a}_{\mathrm{r}-1}+2 \mathrm{a}_{\mathrm{r}-2}=\mathrm{f}(\mathrm{r})$
where $f(r)= \begin{cases}1 & \text { where } r=2 \\ 0 & \text { otherwise }\end{cases}$
(b) Find the discrete numeric function corresponding to the generating function $A(z)=\frac{z^{5}}{5-6 z-z^{2}}$.
4. (a) Prove that a pendant edge in a connected graph G is contained in every spanning tree of G.
(b) In how many arrangements of COMPUTER be arranged whether vowels are adjacent.
5. (a) Examine the mapping $\mathrm{f}: z \rightarrow z$ defined by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+7, x \in z$ is bijective or not.
(b) Use mathematical induction to prove that $16^{\mathrm{n}}+10 \mathrm{n}-1$ is divisible by $25 \forall n \geq 1$.
6. (a) Prove that for a simple graph with n vertices and m components can have at most $(n-m)(n-m+1) / 2$ edges.
(b) Define Hasse diagram of a poset (S, R) where S is a non-empty set with the relation R.

Let $\mathrm{X}=\{1,2,3,4,5,6\}$ and '/' (divided by) is a partial order relation on X . Draw the Hasse diagram on ($\mathrm{X}, /$).
7. (a) Among 100 students, 32 study Mathematics, 20 study Physics, 45 study Biology, 15 study Mathematics and Biology, 7 study Mathematics and Physics, 10 study Physics and Biology and 30 do not study any of the three subjects
(i) Find the number of students studying all three subjects.
(ii) Find the number of students studying exactly one of the three subjects.
(b) Prove that a graph is a tree if and only if there is a unique path between every pair of vertices in G.
8. (a) Prove that the roots of $x^{n}-1=0, n \in z$ form a subgroup of the multiplicative group of non-zero complex numbers. Is the subgroup cylic?
(b) Prove that an undirected graph possesses an Eulerian path if and only if it is connected and has either zero or two vertices of odd degree.

Group - B

Answer any one question. 1×10
9. (a) Define Euler graph with an example.
(b) For $\mathrm{A}=\{\mathrm{a}, \mathrm{b},\{\mathrm{a}, \mathrm{c}\}, \varphi\}$ determine $\{\{a, c\}\}-A$.
(c) Construct truth table for the statement.

$$
p \leftrightarrow(\bar{p} \vee \bar{q}) .
$$

$3+3+4$
10. (a) Let $A=\{3,7,5\}$ and $B=\{4,5,8\}$. Write down total number of distinct relations from A to B .
(b) Given that $\mathrm{A} \subseteq \mathrm{C}$ and $\mathrm{B} \subseteq \mathrm{D}$, show that

A X B \subseteq C X D.
(c) A tree has 2 vertices of degree 2, one vertex of degree 3 and 3 vertices of degree 4. How many vertices of degree I does it have? $3+4+3$
(Internal Assessment : 30)

