
(c) Show that the shortest curve joining two points is a straight line.
2. (a) Solve the following equation by the method of separation of variables.

$$
\frac{\partial^{2} u}{\partial x \partial t}=e^{-\lambda} \cos x
$$

(b) Show that $\int_{o}^{\pi / 2} \operatorname{Sin}^{p} \theta \operatorname{Cos}^{q} \theta d \theta=\frac{\frac{(p+1)}{2} \frac{(q+1)}{2}}{2 \sqrt{\left(\frac{p+q+2}{2}\right)}}$
(c) Prove that $\int_{o}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n}}{(m+1)^{n+1}} \widetilde{(n+1)}$
(d) Show that $\operatorname{erf}(\infty)=1$
3. (a) Find regular singular points of the differential equation.

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+\left(x^{2}-4\right) y=0
$$

(b) Express $f(x)=4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre Polynomials.
(c) Show that $\mathrm{P}_{\mathrm{n}}(-\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{x})$
(d) Find the value of $\int_{-\infty}^{\infty} e^{-x^{2}}\left[H_{n}(x)\right]^{2} d x$
(e) State Parseval Identity.
4. (a) Express $\mathrm{f}(\mathrm{x})=\mathrm{x}$ as a cosine, half range series in $\mathrm{o}<\mathrm{x}<2$
(b) Determine the solution of one dimensional heat equation

$$
\frac{\partial u}{\partial t}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Subject to the boundary conditions $u(o, t)=0, u(l, t)=0,(t>o)$ and the initial condition $u(x, o)=x, l$ being the length of the bar.
(c) Apply variational principle to find the equation of one dimensional harmonic oscillator.
(d) Prove that,

$$
\int x J_{0}^{2}(x) d x=\frac{1}{2} x^{2}\left[J_{0}^{2}(x)+J_{1}^{2}(x)\right]+C
$$

5. (a) Prove that, $\iiint_{V} x^{l-1} y^{m-1} z^{n-1} d x d y d z=\frac{\lceil\sqrt{m}\lceil n}{\sqrt{l+m+n+1}}$
(b) Expand the function $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin (\mathrm{x})$, as a Fourier series in the interval $-\pi \leq x \leq \pi$.

Hence deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9}+\ldots=\frac{\pi-2}{4}$
(c) Find the complex form of the Fourier series of
$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{ax}} \quad-\mathrm{r}<\mathrm{x}<\mathrm{r}$

$$
3+(3+2)+4
$$

6. (a) Prove 'Rodrigue's Formula' of Legendre's Polynomial.
(b) Find the value of $\iiint_{R}(x+y+z+1)^{2} d x d y d z$, where R is defined by $x \geq o, y \geq o, z \geq o, x+y+z \leq 1$
(c) A tightly stretched string with fixed end points $x=o$ and $\mathrm{x}=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.

Group - B

Answer any two of the following questions:
7. If $x=\sum_{k=1}^{\infty} a_{k} \operatorname{Sin} k x$ for $-\pi \leq x \leq \pi$, then find the value of a_{2}.
8. Show that $\sqrt{\frac{1}{2}}=\sqrt{\pi}$
9. Prove that $\lim _{x \rightarrow 0} \frac{J_{n}(x)}{x^{n}}=\frac{1}{2^{n} \sqrt{n+1}}(n>-1)$
10. Prove the relation between beta and gamma function.

(Practical : Marks - 20)

1. Answer any one of the following questions:
(i) Write the necessary formula.
(ii) Write the computer code PYTHON only.
(iii) Print the input and output.
(iv) Display your result graphically.
(a) (i) Write a python program to find the Inverse of the following matrix.

$$
A=\left(\begin{array}{lll}
4 & 5 & 7 \\
3 & 6 & 2 \\
4 & 1 & 8
\end{array}\right)
$$

(ii) Write a program to compute the value of R from the five set of data of Ohm's law experiment.

V (Volt)	$\mathrm{I}(\mathrm{mA})$
1.5	2.88
3.1	5.83
4.2	8.15
5.6	10.70
6.8	13.13

(b) (i) Write a computer program to find the Transpose of the following matrix.

$$
A=\left(\begin{array}{lll}
5 & 4 & 2 \\
3 & 7 & 1 \\
2 & 6 & 8
\end{array}\right)
$$

(ii) An experiment of spring constant determination is performed and the following information is obtained

Mass (g)	50	100	150	200	250
Displacement (cm)	2	4	6	8	11

Fit a straight line $\mathrm{F}=\mathrm{kx}$ (Hooke's law formula) and plot your fitted graph on the curve with the data.
(c) (i) Write a program to find the solution of the linear system of three equations given below.
$5 x_{1}+3 x_{2}+9 x_{3}=2$
$\mathrm{x}_{1}+4 \mathrm{x}_{2}-3 \mathrm{x}_{3}=12$
$-2 x_{1}-3 x_{2}+x_{3}=-9$
(ii) Write a computer program to generate a parabola and plot it using matplotlib module.

