
system has 30% probability of being found in the ground state and 70% probability of being found in the first excited state (i) Write down the wavefunction of the atom? (ii) What is the average energy of the atom?
(c) Normalise the wave function $\psi(x)=\frac{1+i x}{1-i x}$, where $-\infty<x<\infty$.
2. (a) Consider a particle of mass m moving in a 1 D potential specified by $V(x)=\left\{\begin{array}{cc}0 & -2 a<x<2 a \\ \infty & \text { otherwise }\end{array}\right.$
Find the energy eigenvalues and eigenfunctions.
(b) An electron is in the ground state of a 1D infinite square well with $a=1 \AA$. Compute the force that the electron exerts on the wall during an impact on either wall.
(c) Explain the term degeneracy. Find out the degeneracy of the first excited state for a particle confined in a 3D potential box. $1+2$
3. (a) Find the expectation value of the potential energy in the $n^{\text {th }}$ state of the harmonic oscillator.
(b) A particle in the harmonic oscillator potential starts out in the state $\psi(x, 0)=A\left[3 \psi_{0}(x)+4 \psi_{1}(x)\right]$
(i) Find A, (ii) Construct $\psi(x, t)$ and $|\psi(x, t)|^{2}$ (iii) Find $\langle x\rangle$ and $\langle p\rangle$.

$$
2+2+3
$$

(c) Using the uncertainty principle, show that the lowest energy of an oscillator is $\hbar \omega / 2$.
4. (a) The normalised ground state wavefunction of one electron atom is given by $\psi(r, \theta, \varphi)=\left(\frac{z^{3}}{\pi a_{0}^{3}}\right)^{\frac{1}{2}} e^{-r / a_{0}}$, where the notations have usual meaning. Evaluate the probability of finding the electron at a distance greater than $2 a_{0} / z$. 3
(b) The ground state wave function of an electron in hydrogen atom is given by $\psi(r)=\left(\frac{1}{\pi a_{0}^{3}}\right)^{\frac{1}{2}} e^{-r / a_{0}}$ where a_{0} is the Bohr radius. Find the expectation value of potential energy of the electron.
(c) At time $t=0$, the wave function for hydrogen atom is-
a. $\psi(r, 0)=\frac{1}{\sqrt{10}}\left(2 \psi_{100}+\psi_{210}+\sqrt{2} \psi_{211}+\sqrt{3} \psi_{21-1}\right)$

Where the subscripts are the values of quantum numbers n, l, m.
(i) What is the expectation value of the energy of the system? (ii) What is the probability of finding the system with $l=1, m=1$.
$2+1$
(d) What is parity operation? Show that spherical Harmonics are function of definite parity?
$1+2$
5. (a) Describe the Stern Gerlach experiment with necessary theory. Discuss the significance of it.
(b) Can Stern Gerlach experiment be performed with ions rather than neutral atoms?
(c) In Stern Gerlach experiment, on turning of the magnetic field the beam splits into seven components. What is the angular momentum of the atom in the beam?
(d) What is spin-orbit coupling? Find the magnitude of the spin-orbit energy for the state ${ }^{2} P_{1 / 2}$ of the hydrogen atom. The radius of the orbit is $1.5 \AA$. $1+2$
6. (a) Discuss the general quantum mechanical theory of the anomalous Zeeman effect with special reference to Zeeman pattern for D_{1} and D_{2} lines of sodium.
(b) Explain why normal Zeeman effect occurs only in atoms with even number of electrons.

2
(c) What are the values of L, S, J and multiplicity of the state having spectral terms ${ }^{4} D_{7 / 2}$.

Group-B

B. Answer any two of the following questions :
7. Write down the formula of the frequency of Larmour precession. An atom is placed in a magnetic field of strength 1T. Calculate the rate of precession.
8. State and explain the Ehrenfest's theorem.
9. Find the expectation value $<\mathrm{x}^{2}>$ for a Gaussian wave packet given by $\psi(x)=\left(\frac{1}{\sigma \sqrt{\pi}}\right)^{1 / 2} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \exp \left(i k_{0} x\right)$
10. Calculate the transmission coefficient for an electron of total energy $2 e v$ incident upon a rectangular potential barrier of height 4 ev and width 1 nm .

(Practical)

Group-A

A. Answer any one of the following questions:

1. Solve the S-wave Schrödinger equation for the ground state and first excited state of the hydrogen atom.
$\frac{d^{2} y}{d r^{2}}=A(r) U(r) A(r)=\frac{2 m}{\hbar^{2}}[V(r)-E]$, where $V=\frac{-e^{2}}{r}$
S-wave Schrödinger equation for the ground state and first excited state of the Hydrogen atom : m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wave functions.

Ground state of H_{2} atom is $\approx-13.6 \mathrm{ev}$,
$e=3.795(\mathrm{eV} \AA) \frac{1}{2} ; \hbar c=1973(\mathrm{eV} \AA) ; m=0.511 \times 10 \mathrm{eV} / \mathrm{c}^{2}$
2. Solve the S-wave radias Schrödinger equation for an atom
$\frac{d^{2} y}{d r^{2}}=A(r) U(r) ; A(r)=\frac{2 m}{h^{2}}[V(r)-E]$
where m is the reduced mass of the system (which can be choosen to be the mass of an electron) for the Screened coulomb potential $V(r)=\frac{e^{2}}{r} e^{-r / a}$. Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also plot corresponding wave functions.

Take $e=3.795(e V \AA) \frac{1}{2}, m=0.511 \times 106 \mathrm{eV} / \mathrm{cz}$ and $a=3 \AA, 5 A, 7 \AA$.

In this units $\hbar c=1973(e V \AA)$. The ground state energy is expected to be above -12 eV in all three cases.
3. To show the tunnelling efect using tunnel diode using I-V characteristics. Write down the followings :
(a) Theory 4
(b) Draw the energy level diagram 3
(c) Experimental procedure 5
(d) Remarks 2

Group-B

B. Compulsory Questions: (Answer any one question)
4. Write down the theory to study the normal zeeman effect with external magnetic field.
5. Give the experimental arrangement through a block diagram of ESR.
6. Lab notebook / Viva-Voce.

