
(ii) (a) Define first order linear ordinary differential equation. Find the integrating factor of the differential equation $\cos x \frac{d y}{d x}+y \sin x=1$. Solve the differential equation $\frac{d y}{d x}+\frac{1}{1+x^{2}} y=\frac{e^{t a n-1} x}{1+x^{2}}$.
(b) Let us consider the equation $\frac{d^{2} y}{d x^{2}}+y=0$ and find a series solution of this equation near the ordinary point.
(iii) (a) Solve : $\frac{d x}{d t}-7 x+y=0$

$$
\frac{d y}{d t}-2 x-5 y=0
$$

(b) Solve the equation $\frac{d x}{d t}=-w y$ and $\frac{d y}{d t}=w x$ and show that the point (x, y) lies on a circle.
(iv) (a) Solve : $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} e^{3 x}$.
(b) Solve the simultaneous equation :

$$
\frac{a d x}{y z(b-c)}=\frac{b d y}{z x(c-a)}=\frac{c d z}{x y(a-b)}
$$

(v) (a) Use Picard's Method to compute approximately the value of y when $x=0.1$ from the initial value problem $\frac{d y}{d x}=x+y$, when $y(0)=1$. Check the result with the exact value.
(b) Determine the steady state and their stability of the differential equation $\dot{y}=f(y)=y^{2}-5 y+6$ $8+4$
(vi) (a) Solve $\frac{d^{2} y}{d x^{2}}-2 \tan x \frac{d y}{d x}+3 y=2 \sec x$, when $\sec x$ being a solution.
(b) Solve by the method of variation of parameter, the equation $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$.
(vii) (a) Show that the volume of the parallelopiped, whose edges are represented by $(3 i+2 j-4 k),(3 i+j+3 k)$ and $(i-2 j+k)$ is 49 cubic units.
(b) Let α, β, γ be three vectors. Reduce the expression $(\beta+\gamma) \cdot\{(\gamma+\alpha) \times(\alpha+\beta)\}$ to its simplest form and prove that it vanished when α, β, γ are coplanar.
(c) Let a, b, c be three vectors. Prove the identity $[a \times b, b \times c, c \times a]=[a b c]^{2}$.

$$
4+4+4
$$

(viii) (a) State the Green's theorem. Using this theorem evaluate the integral $\oint x^{2} d x+\left(x+y^{2}\right) d y$ along the curve $C: y=0, y=x$ and $y^{2}=2-x$ in the first quadrant.
(b) Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential.

$$
(1+5)+(2+4)
$$

Group - B

2. Answer any six of the following questions :
(i) Find the steady state point (or Equilibrium point) for the system of equations $\dot{x}=x+2 y$ and $\dot{y}=x^{2}+y$.
(ii) Show that the equation $\frac{d y}{d x}=3 x y^{\frac{1}{3}}, y(0)=0$ has no unique solution.
(iii) Using Wronskian, show that $e^{x}, \cos x, \sin x$ are linearly independent.
(iv) Show that $x\left(y^{2}-a^{2}\right) d x+y\left(x^{2}-z^{2}\right) d y-z\left(y^{2}-a^{2}\right) d z$ is integrable.
(v) Show that $x=0$ is a regular singular point of $\left(2 x+x^{3}\right) y^{\prime \prime}-y^{\prime}-6 x y=0$.
(vi) Solve $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$, when $t=0, \frac{d x}{d t}=0$ and $x=0$.
(vii) Define regular singular point and irregular singular point of an ordinary differential equation $P_{0}(x) \frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0$.
(viii) Prove that if $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{a} \vec{b} \vec{c}]=0$.
(ix) Evaluate $\int_{C} F . d r$ where $F=x^{2} y^{2} i+y j$ and the curve C is $y^{2}=4 x$ in the $x y$ - plane from $(0,0)$ to $(4,4)$.
(x) Show that the vector $a=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ is an irrotational vector.

OR

 [GROUP THEORY-I]

 [GROUP THEORY-I]}

(Theory)

Group - A

1. Answer any four of the following questions :
(a) (i) Define abelian group. Show that the eight symmetries of the square form a non abelian group.
(ii) In a group (G,o), prove that
(i) $(a \circ b)^{-1}=b^{-1} \circ a^{-1}, \forall a, b \in G$
(ii) $a \circ b=a \circ c \Rightarrow b=c$
(b) (i) Prove that the set $H=\left\{\left|\begin{array}{ll}a & b \\ 2 a & b\end{array}\right|: a, b \in R\right.$ and $\left.a^{2}+b^{2}=1\right\}$ forms a commutative group with respect to matrix multiplication.
(ii) Show that the set of all permutations on a set of three elements is a nonabelian group.
(c) (i) Let (G, o) be a group and $a \in G$. Prove that $Z(G)$, the centre of the group, is a subgroup of $C(a)$, the centralizer of a.
(ii) Let G be a group in which $(a b)^{3}=a^{3} b^{3}, \forall a, b \in G$. Show that $H=\left\{x^{2}: x \in G\right\}$ is a subgroup of G.
(d) (i) Let $G=S_{3}, G^{\prime}=(\{1,-1\}, \bullet)$ and $\phi: G \rightarrow G^{\prime}$ be defined by $\phi(\alpha)=\left\{\begin{array}{l}1, \text { if } \alpha \text { be an even permutation in } S_{3} \\ -1, \text { if } \alpha \text { be an odd permutation in } S_{3}\end{array}\right.$

Prove that ϕ is a homomorphism.
(ii) State and prove first isomorphism theorem.
(e) (i) Define a cyclic group. Find the generators of $\mathrm{U}(10)$.
(ii) Show that in a group G the right and left cancellation law hold. Is the converse true? Justify your answer.
(iii) Prove that if the identity permutation $\alpha=\beta_{1} \beta_{2} \ldots \ldots . \beta_{r}$ where the β 's are 2cycles, then r is even.
(f) (i) If G is a group with more than one element and G has no proper, nontrivial subgroup. Then prove that G is a finite group of prime order.
(ii) Let H be a subgroup of G and K be a nontrivial subgroup of G. Prove that $H K / K \approx H / H \cap K$.
(g) (i) Let G be an Abelian group with identity e. Prove that $H=\left\{x \in G \mid x^{2}=e\right\}$ is a subgroup of G.
(ii) Let a and b be elements of a group. If $|a|=10$ and $|b|=21$, show that $<\mathrm{a}>\cap<\mathrm{b}>=(\mathrm{e}\}$.
(iii) Determine all homomorphisms from Z_{12} to Z_{30}.
(h) (i) Find the homomorphic images of S_{3}. 3
(ii) Define Centralizer $C(G)$ of a group G. Is $C(G)$ Abelian? 3
(iii) Let $G=\langle a\rangle$ be a cyclic group of order n. Show that $G=\left\langle a^{\mathrm{k}}>\right.$ if and only if $\operatorname{gcd}(k, n)=1$.

Group - B

2. Answer any six of the following questions :
(a) In a group (G, o), a is an element of order 30 . Find the order of a^{18}.
(b) Find the order of the permutation $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2\end{array}\right)$.
(c) Find the number of generators of the cyclic group (S, \bullet) where $S=\{1,-1, i,-i\}$
(d) If $G=S_{3}$ and $H=A_{3}$ then find [$\left.G: H\right]$.
(e) If $G=(Z,+)$ and $H=(3 Z,+)$, then find the distinct left cosets of H.
(f) Let (G, o) and $\left(G^{\prime}, *\right)$ be two groups and $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Show that $\phi\left(a^{-1}\right)=\{\phi(a)\}^{-1}, \forall a \in G$.
(g) Every group of order 35 is cyclic or not? Justify your answer.
(h) Consider the group Z_{30}. Find the smallest positive integer n such that $n[5]=[0]$ in Z_{30}.
(i) Give an example of a group such that normality is not transitive.
(j) Let H is a subgroup of G and $g_{1}, g_{2} \in G$. Then $H g_{1}=H g_{2}$ if and only if $g_{1}^{-1} H=g_{2}^{-1} H$.

OR

[THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACE]

(Theory)

Group -A

1. Answer any four of the following questions :
(a) (i) Show that the limit $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x^{2}}\right)$ does not exist.
(ii) Let $D \subset R$ and $f: D \rightarrow R$ be a function. Let $c \in D \cap D^{\prime}$. Show that f is continuous at c if and only for every sequence $\left\{x_{n}\right\}$ in D converging to c.
(iii) A function $f: R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{rr}2 x, & x \in Q \\ 1-x, & x \in R-Q\end{array}\right.$. Prove that f is continuous at $\frac{1}{3}$ and discontinuous at every other point. $3+5+4$
(b) (i) Prove $I=[a, b]$ be a closed and bounded interval and a function $f: I \rightarrow \mathbb{R}$ be continuous on I. Then f is bounded on I.
(ii) Verify Rolle's theorem of the function $f(x)=x^{2}+\cos x$ on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
(iii) Prove that $\frac{2 x}{\pi}<\sin x$ for $0<x<\frac{\pi}{2}$.
(c) (i) State the prove that Cauchy's Mean Value Theorem.
(ii) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by
$0, \quad$ if $x=0$ or x is irrational.
$f(x)=\left\{\frac{1}{q^{3}}\right.$ if $x=\frac{p}{q}, \quad$ where $p \in \mathbb{Z}, q \in \mathbb{N}$, and $\operatorname{gcd}(p, q)=1$.
Show that f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
(iii) If $k \in \mathbb{R}$ and $f(x)=k, x \in \mathbb{R}$. Find the derived function f^{\prime} and its domain.

$$
5+5+2
$$

(d) (i) Let $f: R \rightarrow R$ be such that $f(x+y)=f(x)+f(y)$ for all x, y in R. If $\lim _{x \rightarrow 0} f=L$ exists, then show that $L=0$.
(ii) Give examples of functions f and g such that f and g do not have limits at a point c, but such that both $f+g$ and $f g$ have limits at c.
(iii) If f is uniformly continuous on $A \subset R$, and $|f(x)|>k>0$ for all $x \in A$, show that $\frac{1}{f}$ is uniformly continuous on A.
(e) (i) If (X, d) is a metric space then prove that finite intersection of open sets in X is open.
(ii) Let (X, d) is a metric space and $A \subset X$. Then prove that A is closed iff A contains all its limit points.
(iii) Let $\left(Y, d_{\mathrm{Y}}\right)$ be a subspace of a metric space (X, d) and $A \subset Y$. Then prove that $x \in Y$ is a limit point of A in Y iff x is a limit point of A in X.

$$
4+4+4
$$

(f) (i) Show that $\left(R^{2}, d\right)$ is a metric space, where the mapping $d: R^{2} \times R^{2} \rightarrow R$ is given by $d(x, y)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\},\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in R^{2}$.
(ii) Prove that a finite set has no limit points.
(iii) If (X, d) is a metric space then prove that a set $A \subset X$ is closed in (X, d) iff its complement $A^{\prime}=X \backslash A$ is open in (X, d).
$5+3+4$
(g) (i) Use Taylor theorem to prove that $1+\frac{x}{2}-\frac{x^{3}}{8}<\sqrt{1+x}<1+\frac{x}{2}$ if $x>0$.
(ii) Let $f: R \rightarrow R$ be a differentiable function on R and $f^{\prime}(x)>f(x)$ for all $x \in R$. If $f(0)=0$, prove that $f(x)>0$ for all $x>0$.
(h) (i) In the set R^{2} of all order pairs of real numbers let us define a function $d: R^{2} \times R^{2} \rightarrow R$ by $d(x, y)=\left|x_{1}-y_{1}\right|$ where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in R^{2}$. Show that d is a pseudo-metric on R^{2}.
(ii) Let (X, d) be any metric space. Is (X, \bar{d}) a Metric space where

$$
\bar{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

Group - B

2. Answer any six of the following questions :
(a) From definition of limit show that $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$. Find δ if $\varepsilon=0.005$.
(b) Give an example of a function which is differentiable at a point but the derivative is not continuous at the same point.
(c) Give an example of a uniformly continuous function on $[0,1]$ that is differentiable on $(0,1)$ but whose derivative is not bounded on $(0,1)$.
(d) Show that the function $f(x)=x+[x]$ is piecewise continuous in $[0,2]$.
(e) If $p(x)$ be a polynomial of degree >1 and $k \in R$, then prove that between any two real roots of $p(x)=0$ there is a real root of $p^{\prime}(x)+k p(x)=0$.
(f) The set of all limit points of a bounded sequence is bounded.
(g) Show that union of arbitrary number of closed sets is a closed set.
(h) Give an example of an incomplete metric space.
(i) Show that every open sphere is an open set but not conversely.
(j) Show that $x<\tan x$ in $0<x<\frac{\pi}{2}$.
