

 2. (a) Solve the equation by Ferrari's Method : x⁴ - 6x² + 16x - 15 = 0 (b) Let A and G are arithmetic mean and geometric mean respectively of n positive real numbers a₁, a₂,, a_n. Prove that (1 + A₁)ⁿ ≥ (1 + a₁)(1 + a₂)(1 + a_n) ≥ (1 + G)ⁿ (c) Prove that the value of the product of first n odd positive integers is less than nⁿ. 3. (a) Consider a set Z in which the relation p is defined by apb iff 2a + 3b is divisible by 5. Examine whether p is an equivalence relation. (b) If f: A → B and g: B → C are both injective mapping then show that the composite mapping gof: A → C is injective. 3 (c) If (2+√3)ⁿ = 1 + f where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1 - f) (f + f) = 1. 4. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. 4. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; Sx + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solutions. (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix (I + A) ¹ (I - A) is skew symmetrie. 			
real numbers $a_1, a_2,, a_n$. Prove that $(1 + A)^n \ge (1 + a_1)(1 + a_2)(1 + a_n) \ge (1 + G)^n$ 6 (c) Prove that the value of the product of first n odd positive integers is less than n^n . 3. (a) Consider a set Z in which the relation ρ is defined by apb iff $2a + 3b$ is divisible by 5. Examine whether ρ is an equivalence relation. (b) If $f: A \to B$ and $g: B \to C$ are both injective mapping then show that the composite mapping $gof: A \to C$ is injective. 3 (c) If $(2 + \sqrt{3})^n = I + f$ where I and n are positive integers and $0 < f < 1$, show that I is an odd integer and $(1 - f)(I + f) = 1$. 4. (a) Find the remainder when $1^5 + 2^5 + + 80^5$ is divided by 4. 3 (b) Find the integers u and v such that $20u + 63v = 1$. 3 (c) Show that a composite number has at least one prime divisor. 3 (d) If $ged (a, b) = 1$, show that $ged (a + b, a^2 + b^2 - ab) = 1$ or 3. 4 (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : $x + y + z = 1$; $x + 2y - z = b$; $5x + 7y + az = b^2$ admits of (i) unique solution, (ii) no solution and (iii) many solution.s 8 (b) Prove that the rank of a real skew symmetric matrix cannot be 1. 3 (c) If A is a real orthogonal matrix and $I + A$ is non-singular, prove that the matrix	2.	(a)	Solve the equation by Ferrari's Method : $x^4 - 6x^2 + 16x - 15 = 0$ 6
 (c) Prove that the value of the product of first n odd positive integers is less than nⁿ. 3 3. (a) Consider a set Z in which the relation p is defined by apb iff 2a + 3b is divisible by 5. Examine whether p is an equivalence relation. (b) If f : A → B and g : B → C are both injective mapping then show that the composite mapping gof : A → C is injective. (c) If (2+√3)ⁿ = I + f where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1 - f) (I + f) = 1. 4. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If ged (a, b) = 1, show that ged (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(b)	
 nⁿ. 3 (a) Consider a set Z in which the relation ρ is defined by apb iff 2a + 3b is divisible by 5. Examine whether ρ is an equivalence relation. 6 (b) If f: A → B and g: B → C are both injective mapping then show that the composite mapping gof: A → C is injective. 3 (c) If (2+√3)ⁿ = I + f where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1 - f) (I + f) = 1. 6 4. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. 3 (b) Find the integers u and v such that 20u + 63v = 1. 3 (c) Show that a composite number has at least one prime divisor. 3 (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. 4 (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 2 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solutions 8 (b) Prove that the rank of a real skew symmetric matrix cannot be 1. 3 (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 			Prove that $(1+A)^n \ge (1+a_1)(1+a_2)(1+a_n) \ge (1+G)^n$ 6
 by 5. Examine whether ρ is an equivalence relation. (b) If f: A → B and g: B → C are both injective mapping then show that the composite mapping gof: A → C is injective. 3 (c) If (2+√3)ⁿ = I + f where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1 - f) (I + f) = 1. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If ged (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(c)	
 composite mapping gof: A → C is injective. 3 (c) If (2+√3)ⁿ = I + f where I and n are positive integers and 0 < f < 1, show that I is an odd integer and (1 - f) (I + f) = 1. 4. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If ged (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 	3.	(a)	
 that I is an odd integer and (1 - f) (I + f) = 1. 4. (a) Find the remainder when 1⁵ + 2⁵ + + 80⁵ is divided by 4. (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(b)	
 (b) Find the integers u and v such that 20u + 63v = 1. (c) Show that a composite number has at least one prime divisor. (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(c)	
 (c) Show that a composite number has at least one prime divisor. (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 	4.	(a)	Find the remainder when $1^5 + 2^5 + \dots + 80^5$ is divided by 4. 3
 (d) If gcd (a, b) = 1, show that gcd (a + b, a² + b² - ab) = 1 or 3. 4 (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 2 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s 8 (b) Prove that the rank of a real skew symmetric matrix cannot be 1. 3 (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(b)	Find the integers u and v such that $20u + 63v = 1$. 3
 (e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(c)	Show that a composite number has at least one prime divisor. 3
 mapping from A to B. 5. (a) Determine the conditions for which the system : x + y + z = 1; x + 2y - z = b; 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(d)	If gcd $(a, b) = 1$, show that gcd $(a + b, a^2 + b^2 - ab) = 1$ or 3.
 5x + 7y + az = b² admits of (i) unique solution, (ii) no solution and (iii) many solution.s (b) Prove that the rank of a real skew symmetric matrix cannot be 1. (c) If A is a real orthogonal matrix and I + A is non-singular, prove that the matrix 		(e)	
(c) If A is a real orthogonal matrix and $I + A$ is non-singular, prove that the matrix	5.	(a)	$5x + 7y + az = b^2$ admits of (i) unique solution, (ii) no solution and (iii) many
		(b)	Prove that the rank of a real skew symmetric matrix cannot be 1. 3
		(c)	

6.	(a)	Find the eigen values of the matrix $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$. Find the eigen vectors
		corresponding to the eigen values with largest magnitude. 5
	(b)	Verify Cayley-Hamilton theorem for the matrix : $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Hence
		deduce A^{-1} if exists. 5
	(c)	Prove that a linearly independent set of vectors in a finite dimensional vector space V over a field F is either a basis of V or it can be extended to a basis of V .
7.	(a)	Determine the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basic vectors (0, 1, 1), (1, 0, 1), (1, 1, 0) of \mathbb{R}^3 to the vector (2, 1, 1), (1, 2, 1), (1, 1, 2) respectively. Find Ker <i>T</i> and Img <i>T</i> . Shoe that <i>Dim Ker T</i> + <i>Dim Img T</i> = 3. 4
	(b)	Obtain fully reduced normal form of the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix}$. Find non
		singular matrix P , Q such that PAQ is the fully reduced normal form. 4
	(c)	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x_1, x_2) = (x_1 - x_2, x_1, 2x_1 + x_2)$. Let β be
		the standard ordered basis of R^2 and $\gamma = \{(1,1,0), (0,1,1), (2,2,3)\}$. Compute
		$[T]^{\gamma}_{\beta}$. If $\alpha = \{(1,2), (2,3)\}$, Compute $[T]^{\gamma}_{\alpha}$.
	(d)	Let V and W be vector spaces and $T: V \to W$ be linear. Then show that $N(T)$
	(u)	and $R(T)_{-}$ are subspaces of V and W respectively. 3
8.	(a)	Do the polynomials $x^3 - 2x^2 + 1$, $4x^3 - x + 3$ and $3x - 2$ generate the vector space $P_3(R)$? Justify.
	(b)	Let $T: P(R) \rightarrow P(R)$ be defined by $T(f(x)) = f'(x)$. If T is linear, prove that
	(-)	T is onto but not one-to-one. 4
	(c)	If <i>n</i> be a positive integer and $(1 + 2i)^n = a + ib$, then prove
		that $a^2 + b^2 = 53^n$. Hence express 53^3 as a sum of two squares. 4
	(d)	If $bc = ac \pmod{n}$ and $gcd(c, n) = 1$, show that $b = a \pmod{n}$.