
2. (a) Solve the equation by Ferrari's Method : $x^{4}-6 x^{2}+16 x-15=0$
(b) Let A and G are arithmetic mean and geometric mean respectively of n positive real numbers $a_{1}, a_{2}, \ldots \ldots, a_{n}$.

Prove that $(1+A)^{n} \geq\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots \ldots .\left(1+a_{n}\right) \geq(1+G)^{n}$
6
(c) Prove that the value of the product of first n odd positive integers is less than n^{n}.
3. (a) Consider a set Z in which the relation ρ is defined by apb iff $2 a+3 b$ is divisible by 5 . Examine whether ρ is an equivalence relation.
(b) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective mapping then show that the composite mapping gof: $A \rightarrow C$ is injective.
(c) If $(2+\sqrt{3})^{n}=I+f$ where I and n are positive integers and $0<f<1$, show that I is an odd integer and $(1-f)(I+f)=1$.
4. (a) Find the remainder when $1^{5}+2^{5}+\ldots . .+80^{5}$ is divided by $4 . \quad 3$
(b) Find the integers u and v such that $20 u+63 v=1$. 3
(c) Show that a composite number has at least one prime divisor.
(d) If $\operatorname{gcd}(a, b)=1$, show that $\operatorname{gcd}\left(a+b, a^{2}+b^{2}-a b\right)=1$ or 3 .
(e) Let A be a set of n elements and B be a set of m elements. Find the numbers of mapping from A to B.
5. (a) Determine the conditions for which the system : $x+y+z=1 ; x+2 y-z=b$; $5 x+7 y+a z=b^{2}$ admits of (i) unique solution, (ii) no solution and (iii) many solution.s
(b) Prove that the rank of a real skew symmetric matrix cannot be 1 .
(c) If A is a real orthogonal matrix and $I+A$ is non-singular, prove that the matrix $(I+A)^{-1}(I-A)$ is skew symmetric.
6. (a) Find the eigen values of the matrix $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$. Find the eigen vectors corresponding to the eigen values with largest magnitude.
(b) Verify Cayley-Hamilton theorem for the matrix : $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$. Hence deduce A^{-1} if exists.
(c) Prove that a linearly independent set of vectors in a finite dimensional vector space V over a field F is either a basis of V or it can be extended to a basis of V.
7. (a) Determine the linear mapping $T: R^{3} \rightarrow R^{3}$ that maps the basic vectors $(0,1$, 1), $(1,0,1),(1,1,0)$ of R^{3} to the vector $(2,1,1),(1,2,1),(1,1,2)$ respectively. Find Ker T and $\operatorname{Img} T$. Shoe that $\operatorname{Dim} \operatorname{Ker} T+\operatorname{Dim} \operatorname{Img} T=3.4$
(b) Obtain fully reduced normal form of the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 2\end{array}\right)$. Find non singular matrix P, Q such that $P A Q$ is the fully reduced normal form.
(c) Let $T: R^{2} \rightarrow R^{3}$ be defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{1}, 2 x_{1}+x_{2}\right)$. Let β be the standard ordered basis of R^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$. Compute $[T]_{\beta}^{\gamma}$. If $\alpha=\{(1,2),(2,3)\}$, Compute $[T]_{\alpha}^{\gamma}$.
(d) Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Then show that $N(T)$ and $R(T)_{-}$are subspaces of V and W respectively.
(a) Do the polynomials $x^{3}-2 x^{2}+1,4 x^{3}-x+3$ and $3 x-2$ generate the vector space $P_{3}(R)$? Justify.
(b) Let $T: P(R) \rightarrow P(R)$ be defined by $T(f(x))=f^{\prime}(x)$. If T is linear, prove that T is onto but not one-to-one.
(c) If n be a positive integer and $(1+2 i)^{n}=a+i b$, then prove that $a^{2}+b^{2}=53^{n}$. Hence express 53^{3} as a sum of two squares.
(d) If $b c=a c(\bmod n)$ and $\operatorname{gcd}(c, n)=1$, show that $b=a(\bmod n)$.

