

## বিদ্যাসাগর বিশ্ববিদ্যালয়

## VIDYASAGAR UNIVERSITY

## B.Sc. Honours Examination 2021 <br> (CBCS)

## 1st Semester

MATHEMATICS

## PAPER-GE1T

# CALCULUS GEOMETRY AND DIFFERENTIAL EQUATION 

Full Marks: 60
Time : 3 Hours

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

1. (a) Find the asymptotes of

$$
y^{3}-x^{2} y-2 x y^{2}+2 x^{3}-7 x y+3 y^{2}+2 x^{2}+2 x+2 y+1=0
$$

(b) Find the envelope of the family of lines $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\sin \alpha \cos \alpha$ where $\alpha$ is a parameter.
2. (a) Show that $\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{6} x d x=\frac{8}{693}$.
(b) Find the entire area of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(c) Find the length of the curve

$$
\begin{array}{r}
x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta) \text { between } \theta=0 \text { and } \theta=\theta_{1} . \\
4+4+4
\end{array}
$$

3. (a) If $\lim _{x \rightarrow 0} \frac{a \sin x-\sin 2 x}{\tan ^{3} x}$ is finite, find the value of $a$, and the limit.
(b) Evaluate $\int \tan ^{5} x d x$.
(c) Show that the area bounded by one arc of the cycloid $x=a(\theta-\sin \theta)$, $y=a(1-\cos \theta)$ and the $X-$ axis is $3 \pi a^{2}$ sq.units. $4+4+4$
4. (a) Reduce the equation $8 x^{2}+8 x y+2 y^{2}+26 x+13 y+15=0$ to its cononical form.
(b) If $r_{1}$ and $r_{2}$ are two mutually perpendicular radius vectors of the ellipse $r^{2}=\frac{b^{2}}{1-e^{2} \cos ^{2} \theta}$. Prove that $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$.

Where a and b are semi-major and Semi-minor axes of the ellipse. 6+6
5. (a) Find the equation of the sphere containing the circle
$x^{2}+y^{2}+z^{2}+7 x-2 z+2=0,2 x+3 y+4 z=8$ as one of its great circle.
(b) Find the equation of the cone whose vertex is the origin and which has $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{p}, \mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$ as its guiding curve.
6. (a) If $y^{\frac{1}{m}}+y^{-\frac{1}{m}=2 x}$, then prove that

$$
\left(x^{2}-1\right) y_{n+2}+(2 n-1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0
$$

(b) If $\alpha, \beta$ be the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ then show that

$$
\lim _{x \rightarrow \alpha} \frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}=\frac{1}{2} a^{2}(\alpha-\beta)^{2} .
$$

(c) Find the points of inflection of the curve $x=a \tan \theta, y=a \sin \theta \cos \theta$. $4+4+4$
7. (a) A plane passing through a fixed point ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) cuts the axes at A, B, C. Show tht the locus of the centre of the sphere OABC is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
(b) Find the equation of the cylinder whose generators are parallel to the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is $\mathrm{x}^{2}+\mathrm{y}^{2}=4$, $z=1$.
(c) Reduce the following equation to its anomical form :

$$
2 x^{2}-4 x y-y^{2}+20 x-2 y+17=0
$$

8. (a) If $y=\sin \left(m \sin ^{-1} x\right)$ then show that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0
$$

(b) Find the point intersection of the tangents at $\theta=\alpha$ and $\theta=\beta$ on the conic $\frac{l}{r}=1+e \cos \theta$.

Answer any six questions.
$6 \times 2$
9. Examine if the ODE $e^{y} d x+\left(1+x e^{y}\right) d y=0$ is exact.
10. If the expression $a x+$ by changes to $a^{1} x^{1}+b^{1} y^{1}$ by a rotation of the rectangular axes about the origin, prove that $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$.
11. Write down the equation of the sphere one of whose diameter has end points $(2,-1,3)$ and $(0,4,-5)$. Find its radins
12. Find $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
13. Find the polar equation of the straight line joining the two prints ( $1, \frac{\pi}{2}$ ) and ( $2, \pi$ ).
14. Find the perimeter of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
15. Show that $\frac{1}{3 x^{3} y^{3}}$ is an integrating factor of

$$
y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0
$$

16. Find the angle through which the axes are to be rotated so that the equation $17 x^{2}-18 x y-7 y^{2}=1$ may be reduced to the form $A x^{2}+B y^{2}$ $=1$, A > 0. Find also A, B.
17. Find the points on the conic $\frac{12}{r}=1-4 \cos \theta$ whose radius vector is 4 .
18. Show that the curve $y=e^{-x^{2}}$ has points of inflexion at $x= \pm \frac{1}{\sqrt{2}}$.
