বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper			
B.Sc. Honours Examinations 2021 (Under CBCS Pattern) Semester - V Subject : MATHEMATICS Paper : DSE 1-T			
Full Marks : 60 Time : 3 Hours			
Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.			
[LINEAR PROGRAMMING] Group-A 1. Answer any four questions: (i) (a) Prove that the set of all convex combinations of a finite number of linearly independent vectors $X_{l}, \ldots \ldots, X_{k}$ is a convex set. (b) Solve the following L.P.P by Big-M method $\begin{array}{ll} \text { Maximize } & z=x_{1}-2 x_{2}+3 x_{3} \\ \text { Subject to } & x_{1}+2 x_{2}+3 x_{3}=15 \\ & 2 x_{1}+x_{2}+5 x_{3}=20 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{array}$			

(ii) (a) Use graphical method, show that the following L.P.P have no feasible solution Maximize $\quad z=3 x+4 y$
Subject to $\quad x-y \leq 1$
$-x+y \leq 0$
$x, y \geq 0$
(b) Examine whether the set is convex or not

$$
X=\left\{\left(x_{1}, x_{2}\right), x_{1} \geq 2, x_{2} \leq 3, x_{1}, x_{2} \geq 0\right\}
$$

(iii) (a) Solve the following L.P.P using simplex method

Maximize $\quad z=x_{1}+2 x_{2}+x_{3}$
Subject to $\quad 2 x_{1}+x_{2}-x_{3} \geq-2$
$-2 x_{1}+x_{2}-5 x_{3} \leq 6$
$4 x_{1}+x_{2}+x_{3} \leq 6$
$x_{1}, x_{2}, x_{3} \geq 0$
(b) Write the dual of the following L.P.P.

Maximize $\quad z=x_{1}+2 x_{2}$
Subject to $\quad 2 x_{1}+3 x_{2} \geq 4$
$3 x_{1}+4 x_{2}=5$
$x_{1} \geq 0$ and x_{2} is unrestricted.
(iv) (a) Prove that the set of all feasible solutions to a linear programming problem is a convex set.
(b) Use two phase simplex method to solve the following L.P.P

Maximize $\quad z=3 x_{1}+2 x_{2}$
Subject to $2 x_{1}+x_{2} \leq 40$
$x_{1}+x_{2} \leq 24$
$2 x_{1}+3 x_{2} \leq 60$
$x_{1}, x_{2} \geq 0$
$4+8$
(v) (a) Prove that the dual of the dual is primal.
(b) Solve the following transportation problem using North-West corner method:

	Destination				Supply
	X	Y	Z	W	
A	5	4	6	14	15
Origin B	2	9	8	6	4
C	6	11	7	13	8
Demand	9	7	5	6	

(vi) (a) Prove that the number of basis variables in a transportation problem with m origin and n destinations is almost $m+n-1$.
(b) Solve the following travelling salesman problem :

	A	B	C	D	E
	∞	2	4	7	1
B	5	∞	2	8	2
C	7	6	∞	4	6
D	10	3	5	∞	4
E	1	2	2	8	∞

(vii) (a) Find the optimal assignment and the optimal assignment cost from the following cost matrix :

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
I	9	8	7	6	4
II	5	7	5	6	8
III	8	7	6	3	5
IV	8	5	4	9	3
V	6	7	6	8	5

(b) Prove that if we add a fixed number to each element of a pay-of matrix, the optimal strategies remain unchanged but the value of the game is increased by that number.
(viii) (a) Solve graphically the game whose pay-off matrix is

> Player B

Player $A\left(\begin{array}{lllr}2 & 2 & 3 & -1 \\ 4 & 3 & 2 & 6\end{array}\right)$
(b) Use dominance property to reduce the pay-off matrix given by

Player B

Plaer $A\left(\begin{array}{rrrr}3 & -1 & 1 & 2 \\ -2 & 3 & 2 & 6 \\ 2 & -2 & -1 & 1\end{array}\right)$
into a 2×2 matrix and find the mixed strategies for A and B. Also find the value of the game.

Group-B

2. Answer any six questions:
(i) Find the extreme point, if any, of the set

$$
S=\{(x, y):|x| \leq 1,|y| \leq 1\} .
$$

(ii) State the fundamental theorem of linear programming.
(iii) Define zero sum game.
(iv) Solve the games with the following payoff matrix $\left(\begin{array}{rr}6 & -3 \\ -3 & 0\end{array}\right)$.
(v) Prove that the solution of a transportation problem is never unbounded.
(vi) Define saddle point of a game.
(vii) Define basic feasible solution of an L.P.P.
(viii) For what values of a, the game with the following payoff matrix is strictly determinable?

		I	II
II			
I	a	5	2
II	-1	a	-8
III	-2	3	a

(ix) Put the following problem in standard from

Maximize $\quad z=3 x_{1}-4 x_{2}-x_{3}$
Subject to $x_{1}+3 x_{2}-4 x_{3} \leq 12$

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3} \leq 20 \\
& x_{1}-4 x_{2}-5 x_{3} \geq 5 \\
& x_{1} \geq 0, x_{2} \text { and } \\
& x_{3} \text { are unrestricted in sign. }
\end{aligned}
$$

(x) In a game with the 2×2 payof matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where $a<d<b<c$, show that there is no saddle point.

OR

[POINT SET TOPOLOGY]

Group-A

1. Answer any four questions :
(a) (i) Check whether the set $A=\left\{f:\{0,1\} \rightarrow \mathbb{Z}^{+} \mid f\right.$ is a function and Z^{+}denote the set of all positive integers $\}$ is countable or not.
(ii) Prove $\left(\mathbb{R}, \tau_{\mathrm{u}}\right)$, where τ_{u} denotes the usual topology on \mathbb{R}, has a countable base.
(iii) Show that $S=\{(-\infty, a) \mid a \in \mathbb{R}\} \cup\{(b, \infty) \mid b \in \mathbb{R}\}$ is a subbase for the lower limit topology τ_{l} on \mathbb{R}.
(iv) Prove that the union of collection of connected sets having a point in common is connected.
(b) (i) Show that every well-ordered set has the least upper bound property.
(ii) Prove that in a topological space $(X, \tau), b d(A)=\bar{A} \cap \bar{A}^{C}$ where A is a nonempty subset of X.
(iii) Let $(X, \tau),\left(Y, \tau^{\prime}\right)$ be two topological spaces and $b \in Y$. Then prove that X and $X \times\{b\}$ are homeomorphic. Hence prove that the product space $X \times Y$ is connected, if X and Y are connected.
(iv) Prove that \mathbb{R} with respect to the usual topology τ_{u} is not compact.

$$
2+2+(3+3)+2=12
$$

(c) (i) Let A_{1} and A_{2} be disjoint sets, well-ordered by $<_{1}$ and $<_{2}$, respectively. Define an order relation on $A_{1} \cup A_{2}$ by letting $a<b$ either if $a, b \in A_{1}$ and $a<1 b$, or if $a, b \in A_{2}$ and $a<_{2} b$, or if $a \in A_{1}$ and $b \in A_{2}$. Show that this is a wellordering.
(ii) Consider a family of non-empty sets $\left\{X_{\alpha} \mid \alpha \in \Lambda\right\}$ where Λ is an infinite set. Prove that the box topology is finer than the product topology on $\Pi_{\alpha \in \Lambda} X_{\alpha}$.
(iii) Define totally bounded metric space with an example.
(d) (i) Given two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ in \mathbb{R}^{2}, define $\left(x_{0}, y_{0}\right)<\left(x_{1}, y_{1}\right)$ if $x_{0}<x_{1}$ and $y_{0} \leq y_{1}$. Show that the curve $y=x^{3}$ is a maximal simply ordered subset of \mathbb{R}^{2}.
(ii) Let X be a non-empty set and consider the following metric on X :
$d(x, y)= \begin{cases}1 & \text { if } \\ 0 & \text { if } \\ x=y\end{cases}$
Prove that the metric topolgocy on X induced by d is the discrete topology on X.
(iii) Define open map, Let X be the subspace $[0,1] \cup[2,3]$ of the topological space $\left(\mathbb{R}, \tau_{\mathrm{u}}\right)$ and Y be the subspace $[0,2]$ of the topological space $\left(\mathbb{R}, \tau_{\mathrm{u}}\right)$ where τ_{u} denotes the usual topology on \mathbb{R}). Is the map $p: X \rightarrow Y$ an open map where p is defined as follows :
$p(x)=\left\{\begin{array}{c}x, \text { if } x \in[0,1] \\ x-1, \text { if } x \in[2,3] \text { ? }\end{array}\right.$
Justify your answer.
(iv) Prove that every closed subspace of a compact space is compact.

$$
3+2+(1+2)+4=12
$$

(e) (i) Using the Axiom of choice show that if $f: A \rightarrow B$ is a surjective function, then f has a right inverse $h: B \rightarrow A$.
(ii) Deine a quotient map between two topological spaces. Then deine the quotient topology induced by the function p on a set A where (X, τ) is a topologcial space and $p: X \rightarrow A$ is a surjective map.
(iii) Consider $\left(\mathbb{R}, \tau_{\mathrm{u}}\right)$ where τ_{u} denote the usual topology on \mathbb{R}. Define a surjective $\operatorname{map} p$ from \mathbb{R} onto a three-element set $A=\{a, b, c\}$ defined by

$$
p(x)=\left\{\begin{array}{l}
a, \text { if } x>0 \\
b, \text { if } x<0 \\
c, \text { if } x=0
\end{array}\right.
$$

Compute the quotient topology on A induced by the surjective function p.
(iv) Deine finite complement (co-finite) topology on a set X. Then show that an infinite set X is always connected with respect to the finite complement topology.
(v) Give example (with justification) of a locally connected subspace which is not a connected subspace in $\left(\mathbb{R}, \tau_{\mathrm{u}}\right)$ where τ_{u} denotes the usual topology on \mathbb{R}. $2+(1+1)+2+(1+2)+3=12$
(f) (i) Consider the strict partial orderd set $\left(\mathbb{R}^{2},<\right)$ where for $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$, $\left(x_{0}, y_{0}\right)<\left(x_{1}, y_{1}\right)$ if any only if $x_{0}=y_{1}$ and $x_{0}<x_{1}$. Find a maximal simple ordered subset of $\left(\mathbb{R}^{2},<\right)$.
(ii) Let (X, τ) and $\left(X, \tau^{\prime}\right)$ be two topological spaces, $B \subseteq \tau^{\prime}$ be a base for the topology τ^{\prime} on Y and $f: X \rightarrow Y$ be a mapping. Then prove that f is continuous if and only $f^{-1}(B) \in \tau$ for all $B \in \mathrm{~B}$.
(iii) Let τ and τ^{\prime} be two topologies on a set X such that $\tau \subseteq \tau^{\prime}$. Prove that the connectedness of $\left(X, \tau^{\prime}\right)$ implies connectedness of (X, τ). By exhibiting an example (with justification) show that the connectedness of (X, τ) need not always imply the connectedness of $\left(X, \tau^{\prime}\right)$.
(g) (i) State Schroeder-Bernstein Theorem.
(ii) Give example of a continuous bijective function between two topological spaces which fails to be a homeomorphism.
(iii) Consider a family of topological spaces $\left\{\left(X_{a}, \tau_{a}\right) \mid \alpha \in \Lambda\right\}$ where Λ is an infinite set. Let $A_{\alpha} \subseteq X_{\alpha}$ for each $\alpha \in A$. Then prove that $\overline{\prod_{\alpha \in \Lambda} A_{\alpha}}=\prod_{\alpha \in \Lambda} \overline{A_{\alpha}}$ holds in the product topology on $\prod_{\alpha \in \Lambda} X_{\alpha}$.
(iv) Show that finite union of compact subspaces in a topological space in compact again.
$2+3+4+3=12$
(h) (i) Show that in a well-ordered set, every element except the largest (if exists) has an immediate successor.
(ii) Give an example (with justification) of a function on a topological space which is continuous precisely at one point.
(iii) Prove that the image of a compact space under a continuous map is compact.
(iv) Let τ_{1} and τ_{2} be two topologies on a set X such that $\tau_{1} \subseteq \tau_{2}$. Does the compactness of $\left(X, \tau_{1}\right)$ imply the compactness of $\left(X, \tau_{2}\right)$? Justify your answer explicitly.

Group-B

2. Answer any six questions :
(a) Give an example (with justiication) of a countably infinite set.
(b) State axiom of choice.
(c) Prove that $(0,1) \subseteq \mathbb{R}$ is not well ordered.
(d) Show that any uncountable set has greater cardinality than \mathbb{N}.
(e) Prove that the usual topology is coarser than the lower limit topology on \mathbb{R}.
(f) Consider the set $Y=[-1,1]$ as a subspace of \mathbb{R} with the usual topology. Is $A=\left\{x \in \mathbb{R}\left|\frac{1}{2}<|x|<1\right\}\right.$ open in Y ? Justify your answer.
(g) Consider a family of topological spaces $\left\{\left(X_{\alpha}, \tau_{\alpha}\right) \mid \alpha \in \Lambda\right\}$ and the Cartesian product $\Pi_{\alpha \in \Lambda} X_{\alpha}$. Define product topology on $\Pi_{\alpha \in \Lambda} X_{\alpha}$.
(h) Let (X, τ) be a topological space, $A \subseteq X$ and τ_{A} denotes the subspace topology. Prove that the inclusion map from $\left(A, \tau_{A}\right)$ into (X, τ) is a continuous map.
(i) Define path connected topological space with an example.
(j) Consider the subspace $A=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$ in the topological space \mathbb{R} with the usual topology τ_{u}. Prove that A is compact.

OR

[THEORY OF EQUATION]

Group-A

Answer any four questions :

1. (a) For what integral value $m, x^{2}+x+1$ is a factor of $x^{2 m} _x^{m}+1$?
(b) If $f(x)$ be a polynomial in x of degree n and α is any number real or complex, then show that

$$
f(x)=f(\alpha)+f^{\prime}(\alpha)(x-\alpha)+f^{\prime \prime}(\alpha)(x-\alpha)^{2}+\ldots \ldots+f^{n}(\alpha)(x-\alpha)^{n}
$$

(c) If $x^{4}+p x^{2}+q x+r$ has a factor of the form $(x-a)^{3}$, then show that $8 p^{3}+27 q^{2}=0$ and $p^{2}+12 r=0$.
2. (a) A polynomial $f(x)$ leaves a remainder 10 when it is divided by $(x-2)$ and the reminder $(2 x-3)$ when it is divided by $(x+1)^{2}$. Find the remainder when it is divided by $(x-2)(x+1)^{2}$.
(b) If $f(x)$ be a polynomial in x and a, b are unequal, show that remainder in the division of $f(x)$ by $(x-a)(x-b)$ is $\frac{(x-b) f(a)-(x-a) f(b)}{(a-b)}$.

$$
4+4+4=12
$$

3. (a) Solve the equation $x^{4}-x^{3}+2 x^{2}-x+1=0$, which has four distinct roots of equal moduli.
(b) Find the conditions for which the equation $x^{4}-14 x^{3}+24 x+k=0$, has (i) four unequal real roots, (ii) two distinct real roots, (iii) no real root.
(c) Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots . .+a_{n}$ where $a_{0}, a_{1} \ldots \ldots a_{n}$ are integers. If $f(0), f(1)$ be both odd prove that the equation $f(x)=0$ cannot have an integer root.

$$
4+4+4=12
$$

4. (a) Use Sturm's theorem to find nature and position of the real roots of the equation $x^{3}-7 x+7=0$.
(b) Prove that the solution of any reciprocal equation depends on that of a reciprocal equation of first type and of even degree.
(c) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $x^{4}+4 p x^{3}+6 q x^{2}+4 r x+s=0$ find the value of $\sum \alpha^{2} \beta^{2}(\gamma-\delta)^{2}$. $4+4+4=12$
5. (a) Let $\alpha_{1}, \alpha_{2} \ldots \ldots . \alpha_{n}$ be the roots of the equation $f(x)=x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots . .+p_{n}=0 \quad$ and \quad let $\quad S_{r}=\alpha_{1}^{r}+\alpha_{2}^{r}+\alpha_{3}^{r}+\ldots . . .+\alpha_{n}^{r}$, where $r>0$, is an intreger. Then show that-
(i) $S_{r}+p_{1} S_{r-1}+\ldots .+p_{r-1} S_{1}+r p_{r}=0$ if $12 \leq r<n$
(ii) $S_{r}+p_{1} S_{r-1}+\ldots . .+p_{n} S_{r-n}=0$ if $r>n$.
(b) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0, s \neq 0$ then find the values of $\sum \frac{\alpha \beta}{\gamma}, \sum \frac{\alpha^{2}}{\beta}$.
6. (a) Show that the equation $x^{3}-16 x^{2}-x-1=0$ has only positive root.
(b) If equation $f(x)=0$ has all roots real, then show that the equation $f f^{\prime \prime}-\left\{f^{\prime}\right\}^{2}=0$ has all its root imaginary.
(c) If the roots of the equation $x^{3}+3 p x^{2}+3 q x+r=0$ are in H.P., then show that

$$
2 q^{3}=3 p q r-r^{2} .
$$

$$
4+4+4=12
$$

7. (a) Find the substitution of the form $x=m y+n$ which will transform the following equation to a reciprocal one and hence solve it $x^{4}-7 x^{3}+13 x^{2}-12 x+6=0$.
(b) Solve the equation $x^{5}-1=0$, Hence find the value of $\cos \frac{\pi}{5}, \cos \frac{2 \pi}{5} . \quad 8+4=12$
8. (a) Solve the equation $x^{7}-1=0$. Deduce that $2 \cos \frac{2 \pi}{7}, 2 \cos \frac{4 \pi}{7}, 2 \cos \frac{8 \pi}{7}$ are the roots of the equation $t^{3}+t^{2}-2 t-1=0$.
(b) Solve the equation $x^{3}-13 x-35=0$, by taking $x=u+v$.

Group-B

9. Answer any six questions :
(a) Prove that the roots of the equation $(2 x+3)(2 x+4)(x-1)(4 x-7)+$ $(x+1)(2 x-1)(2 x-3)=0$ are all real and different.
(b) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $x^{4}-x^{3}+2 x^{2}+x+1=0$, find the value of $\left(\alpha^{3}+1\right)\left(\beta^{3}+1\right)\left(\gamma^{3}+1\right)\left(\delta^{3}+1\right)$.
(c) Express $x^{5}-5 x^{4}+12 x^{2}-1$ as a polynomial in $(x-1)$.
(d) State Descartes rule of signs.
(e) Apply Descartes rule of signs to find the nature of the roots of the equation $x^{6}+7 x^{4}+x^{2}+2 x+1=0$.
(f) If α be amultiple root of order 3 of the equation $x^{4}+b x^{2}+c x+d=0(d \neq 0)$, show that $\alpha=-\frac{8 d}{3 c}$
(g) If $(x)=x^{4}-3 x^{2}+10 x$, express $f(x+3)$ as a polynomial in x .
(h) Determine the multiple roots of the equation $x^{5}+2 x^{4}+2 x^{3}+4 x^{2}+x+2=0$.
(i) Solve the equation $x^{4}+x^{2}-2 x+6=0$, it is given that $1+i$ is a root.
(j) How many times the graph of the polynomial $\left(x^{3}-1\right)\left(x^{2}+x+1\right)$ will cross x axis?
