
(ii) Fit a parabola to the following data by taking ' x ' as independent variable.

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

(b) (i) Given $\frac{d y}{d x}=y^{2}-x^{2}$, where $y(0)=2$. Find $y(0.1)$ and $y(0.2)$ as a solution of this equation by fourth order Runge-Kutta method.
(ii) Solve the following system of equations by Gauss-Seidal method correct up to

$$
\begin{aligned}
& 3 x+y+z=3 \\
& \text { four significant figures : } 2 x+y+5 z=5
\end{aligned}
$$

$$
6+6
$$

(c) (i) Consider the equation $5 x^{3}-20 x+3=0$. Find the root, using iteration method, lying on the interval $[0,1]$ correct up to 5 decimal places. Find the order of convergence of the iteration method.
(ii) Find the value of $\int_{0}^{1} \frac{d x}{1+x^{2}}$ taking 5 sub-intervals, by trapezoidal rule, correct to five significant figures. Also find the error by comparing with the exact value. 6
(d) (i) Find the method of iteration for numerical integration.
(ii) If $x=\alpha$ be a root of the equation $f(x)=0$ which is rewritten as $x=\phi(x)$. If $\phi(x)$ is continuous and $\left|\phi^{\prime}(x)\right| \leq 1$ where $0<l<1$, in an interval l containing α, then prove that the sequence $\left(x_{n}\right)$ of iterations determined from $x_{n+1}=\phi\left(x_{n}\right),(n=0,1,2 \ldots .$.$) converges to the root \alpha$.
(iii) Let $y=5 x^{7}-4 x$. Find the percentage error in y at $x=1$, if the error in x is $\Delta x=0.04$.
(e) Find the basic principle for Newton-Raphson method with its geometrical meaning. Find advantages and disadvantages of Newton-Raphson method. How can you use this method for an assigned root of a positive real number.
(f) Establish the Gauss Legendre Quadrature formula for numerical integration $\int_{a}^{b} f(x) d x$ and then establish composite Simpson's $\frac{1}{3} \mathrm{rd}$ rule from it. Evaluate $\int_{0}^{1} x^{3} d x$, by Simpson's $\frac{1}{3}$ rd rule with $n=5$. $4+4+4$

Group - B

2. Answer any two of the following questions :
(a) Find $f(x)$, when its first difference is $x^{3}+4 x^{2}+2 x+7$.
(b) Define Round off error and Truncation error.
(c) Show that the maximum error in linear interpolation is given by $\frac{h^{2} M_{2}}{8}$ where $M_{2}=\max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|$.
(d) Compare between Newton-Cote's quadrature and Gaussian quadrature.

(Practical)

[NUMERICAL METHODS LAB]

Group - A

1. Answer any one of the following questions :
(a) Write a program to find a root of the equation $x^{3}-3 x+1=0$ by Newton-Raphson method.
(b) Write a proram to solve an ordinary differential equation by modified Euler's method, $\frac{d y}{d x}=x^{2}+y^{2}$ with $y(0)=1$ at $y(0.2)$ and $y(0.4)$.
(c) Write a program on Lagrange's interpolation polynomial to find the value of a certain point from the given set of data. Find the value of 1.75 from the set of data :

x	1	1.5	2	3.2	4.5
y	5	8.2	9.2	11	16

Group - B

2. Answer any one of the following questions :
(a) Write a program to find the sum of the following series $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . .+\frac{1}{N}$.
(b) Write a program to enter 100 integers into an array and sort them in an ascending order.
(c) Write a program to find the value of the integration by Trapezoidal rule, $\int_{0}^{5} e^{-x} d x$ by taking 6 intervals.
