



**Question Paper** 

# **B.Sc. Honours Examinations 2021**

(Under CBCS Pattern)

Semester - III

## **Subject : MATHEMATICS**

Paper : C 7 - T & P

### Full Marks : 60 (Theory - 40 + Practical - 20)

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

### [NUMERICAL METHODS]

(Theory)

#### Group - A

1. Answer any *three* of the following questions :

12×3=36

(a) (i) Factorize the matrix  $\begin{bmatrix} 2 & -2 & 1 \\ 5 & 1 & -3 \\ 3 & 4 & 1 \end{bmatrix}$  into the form LU, where L and U are

lower and upper triangular matrices and hence solve the system of equations

2x - 2y + z = 2 5x + y - 3z = 03x + 4y + z = 9

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | (ii)                                                                                                    | Fit a parabola to the following data by taking ' $x$ ' as independent variable.                                                                     |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|----------|--------|-----------|-----------|-------------------|------------|----------------|---------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                                                                         |                                                                                                                                                     | x                                                                                      | 1       | 2        | 3      | 4         | 5         | 6                 | 7          | 8              | 9       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                                                                         |                                                                                                                                                     | У                                                                                      | 2       | 6        | 7      | 8         | 10        | 11                | 11         | 10             | 9       | 8+4      |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b)                                                                                      | (i)                                                                                                     | Given $\frac{dy}{dx} = y^2 - x^2$ , where $y(0) = 2$ . Find $y(0.1)$ and $y(0.2)$ as a solution of this equation by fourth order Runge-Kutta method |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | (ii)                                                                                                    | Solve the following system of equations by Gauss-Seidal method correct up to                                                                        |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | four significant figures : $3x + y + z = 3$<br>x + 4y + z = 2                            |                                                                                                         |                                                                                                                                                     |                                                                                        |         |          |        |           | 6+6       |                   |            |                |         |          |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) (i) Consider the equation $5x^3 - 20x + 3 = 0$ . Find the root, using iteration me   |                                                                                                         |                                                                                                                                                     |                                                                                        |         |          |        |           | n method, |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                                                                         | lying on the interval [0, 1] correct up to 5 decimal places. Find the order of convergence of the iteration method.                                 |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | (ii) Find the value of $\int_0^1 \frac{dx}{1+x^2}$ taking 5 sub-intervals, by trapezoidal rule, correct |                                                                                                                                                     |                                                                                        |         |          |        |           |           |                   | correct to |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( 1)                                                                                     | Ċ                                                                                                       |                                                                                                                                                     | gninca                                                                                 |         | iies. Al |        | i ule el  | . 101 Uy  | comp              | ang v      | viui uie       | exact   | value. 0 |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d)                                                                                      | (1)                                                                                                     | Find the method of iteration for numerical integration.                                                                                             |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
| (ii) If $x = \alpha$ be a root of the equation $f(x) = 0$ where $f(x) = 0$ whe |                                                                                          |                                                                                                         |                                                                                                                                                     |                                                                                        |         |          |        | 0 whi     | ch is 1   | rewritt           | en as      | $x = \phi(x).$ |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | If $\phi(x)$ is continuous and $ \phi'(x)  \le 1$ where $0 < l < 1$ , in an              |                                                                                                         |                                                                                                                                                     |                                                                                        |         |          |        |           | n an      | interval <i>l</i> |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Containing $\alpha$ , then prove that the sequence $(x_n)$ of iterations determined from |                                                                                                         |                                                                                                                                                     |                                                                                        |         |          |        | ined from |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                                                                         | $x_{n+1} = \phi(x_n), (n = 0, 1, 2)$ converges to the root $\alpha$ .                                                                               |                                                                                        |         |          |        |           |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | (iii)                                                                                                   | Let y                                                                                                                                               | Let $y = 5x^7 - 4x$ . Find the percentage error in y at $x = 1$ , if the error in x is |         |          |        |           |           |                   |            |                |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                                                                         | $\Delta x =$                                                                                                                                        | 0.04.                                                                                  |         |          |        |           |           |                   |            |                |         | 4        |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (e)                                                                                      | Find                                                                                                    | the basi                                                                                                                                            | ic prin                                                                                | ciple f | for Nev  | wton-I | Raphso    | on met    | hod w             | ith its    | geome          | etrical | meaning. |

(e) Find the basic principle for Newton-Raphson method with its geometrical meaning.
Find advantages and disadvantages of Newton-Raphson method. How can you use this method for an assigned root of a positive real number.

4+2+2+4

(f) Establish the Gauss Legendre Quadrature formula for numerical integration  $\int_{a}^{b} f(x) dx$ and then establish composite Simpson's  $\frac{1}{3}$  rd rule from it. Evaluate  $\int_{0}^{1} x^{3} dx$ , by Simpson's  $\frac{1}{3}$  rd rule with n = 5. 4+4+4

#### Group - B

- 2. Answer any *two* of the following questions :
  - (a) Find f(x), when its first difference is  $x^3 + 4x^2 + 2x + 7$ .
  - (b) Define Round off error and Truncation error.
  - (c) Show that the maximum error in linear interpolation is given by  $\frac{h^2 M_2}{8}$  where  $M_2 = \max_{0 \le x \le 1} |f'(x)|$ .
  - (d) Compare between Newton-Cote's quadrature and Gaussian quadrature.

#### (Practical)

#### [NUMERICAL METHODS LAB]

#### Group-A

1. Answer any *one* of the following questions :

- 15×1=15
- (a) Write a program to find a root of the equation  $x^3 3x + 1 = 0$  by Newton-Raphson method.
- (b) Write a proram to solve an ordinary differential equation by modified Euler's method,

$$\frac{dy}{dx} = x^2 + y^2$$
 with  $y(0) = 1$  at  $y(0.2)$  and  $y(0.4)$ .

(c) Write a program on Lagrange's interpolation polynomial to find the value of a certain point from the given set of data. Find the value of 1.75 from the set of data :

| x | 1 | 1.5 | 2   | 3.2 | 4.5 |
|---|---|-----|-----|-----|-----|
| у | 5 | 8.2 | 9.2 | 11  | 16  |

#### Group - B

2. Answer any *one* of the following questions :

51

(a) Write a program to find the sum of the following series  $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{N}$ .

(b) Write a program to enter 100 integers into an array and sort them in an ascending order.

(c) Write a program to find the value of the integration by Trapezoidal rule,  $\int_0^5 e^{-x} dx$  by taking 6 intervals.

5×1=5