

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern)

Semester - III

Subject : MATHEMATICS

Paper : C 6 - T

Full Marks : 60

Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[GROUP THEORY-I]

(Theory)

Group - A

1. Answer any *four* of the following questions :

(i) (a) Let G be the set consisting of the six functions f_1, f_2, \dots, f_6 defined on

$$R \setminus \{0,1\}$$
 by $f_1(x) = x$, $f_2(x) = 1-x$, $f_3(x) = \frac{1}{x}$, $f_4(x) = \frac{1}{1-x}$,

 $f_5(x) = \frac{x-1}{x}$, $f_6(x) = \frac{x}{x-1}$ and let *o* be the composition of functions. Then show thag (*G*, 0) is a non-abelian group. 7

12×4=48

	(b)	Let G be a group and $a \in G$ is of order n. Then $(a^p) = \frac{n}{gcd(n,p)}$. Hence
		determine $O(a^3)$ and $O(a^8)$, when $O(a) = 12$. 5
(ii)	(a)	Let T be the group of 2×2 invertible matrices over R under usual matrix multiplication. Let G be the subgroup of T generated by the matrices
		$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
		Prove that $G \cong D_4$ (i.e., G is a dihedral group of degree 4.) 7
	(b)	Let $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} a \in Q^* \right\}$, where $Q^* = Q - \{0\}$. Then prove that <i>G</i> is an abelian
		group with respect to multiplication of matrices. 5
(iii)	(a)	Define center of a group. Find center of S_3 . 6
	(b)	Let <i>H</i> be a subgroup of a group <i>G</i> and $N(H) = \{a \in G \mid aHa^{-1} = H\}$. Prove
		that $N(H)$ is a subgroup of G which contains H . 6
(iv)	(a)	Find the order of $(1, 2, 3, 4)$ $(5, 6, 7)$ in S_7 . 2
	(b)	Find all elements of order 8 in $(Z_{24}, +)$. 3
	(c)	Let $(G, *)$ be a group and H be a non-empty finite subset of G . Then show that
		$(H, *)$ is a subgroup of $(G, *)$ if and only if $a \in H$, $b \in H \Rightarrow a * b \in H$.
	(d)	Prove that every transposition is its own inverse. 2
(v)	(a)	Let <i>H</i> and <i>K</i> be subgroups of a group <i>G</i> . Then show that <i>HK</i> is a subgroup of <i>G</i> if and only if $HK = KH$.
	(b)	Let $(G, *)$ be a group and $(H, *)$ is a subgroup of $(G, *)$. Let $a, b \in G$ and a
		relation ρ is defined on <i>G</i> by " $a\rho b$ <i>iff</i> $x * y^{-1} \in H$ ". Prove that ρ is an equivalence relation. 4

- Show that every subgroup of a cyclic group is cyclic. 4 (c) Suppose G_1 and G_2 are two groups. Then show that the subsets $G_1 \times \{e\}$ and (vi) (a) $\{\mathbf{e}\}\times G_2 \text{ of } G_1\times G_2 \text{ are normal subgroups of } G_1\times G_2.$ 6 Let G and G' be two a groups and $\theta: G \to G'$ be a homomorphism of G (b) onto G'. Prove that If G is abelian, then G' is abelian. (i) If G is cyclic, then G' is cyclic. (ii) If *H* is a normal subgroup of *G*, then $\theta(H)$ is also a normal subgroup of (iii) G'. 6 If *H* and *K* both are normal subgroups of a group *G* such that $H \subseteq K$, then (vii) (a) prove that $G/K \cong (G/H)/(K/H)$. 6 (b) Prove that any infinite cyclic group is isomorphic to the additive group Z of all integers. 6 (viii) (a) Prove that there are only two (up to isomorphism) groups of order 6. 4 Let G be a finite cyclic group of order m. Then for every positive divisor d of (b)m, there exists a unique subgroup of G of order d. 4 Show that every proper subgroup of S_3 is cyclic. 4 (c) Group - B 2. Answer any six of the following questions : 2×6=12 If in a group G, $a^5 = e, aba^{-1} = b^2$ for $a, b \in G$, then show that O(b) = 31. (i)
 - (ii) If G be a group of order 8 and G' be a group of order 3. Prove that there does not exist a homomorphism from G onto G'.
 - (iii) Show that (Q, +) is not finitely generated.
 - (iv) Let *G* be an abelian group and *n* be a fixed positive integer. Let $H = \{a^n \mid a \in G\}$. Prove that *H* is a subgroup of *G*.

- (v) Find order of $((1 \ 2), 4)$ in $S_3 \times Z_6$.
- (vi) Give an example of a noncommutative group in which every subgroup is normal.
- (vii) Prove that a non-commutative group of order 10 must have a subgroup of order 5.
- (viii) Let G be a group and $a, b \in G$. Prove that O(ab) = O(ba).
- (ix) Prove that the sub set $H = \{e, (1, 2), (3, 4), (1, 2)(3, 4)\}$ of S_4 forms a non-cyclic subgroup of S_4 . Is the group S_4 cyclic?
- (x) Let G be a group and $a \in G$. Prove that N(a) = G iff $a \in Z(G)$.

330