	বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper
	B.Sc. Honours Examinations 2021 (Under CBCS Pattern) Semester - III Subject : MATHEMATICS Paper : C 6-T
	Full Marks : 60 Time : 3 Hours
	Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
	[GROUP THEORY-I] (Theory) Group - A Answer any four of the following questions : (i) (a) Let G be the set consisting of the six functions $f_{1}, f_{2}, \ldots \ldots, f_{6}$ defined on $R \backslash\{0,1\} \quad$ by $\quad f_{1}(x)=x, \quad f_{2}(x)=1-x, \quad f_{3}(x)=\frac{1}{x}, \quad f_{4}(x)=\frac{1}{1-x}$, $f_{5}(x)=\frac{x-1}{x}, f_{6}(x)=\frac{x}{x-1}$ and let o be the composition of functions. Then show thag $(G, 0)$ is a non-abelian group.

(b) Let G be a group and $a \in G$ is of order n. Then $\left(a^{p}\right)=\frac{n}{\operatorname{gcd}(n, p)}$. Hence determine $O\left(a^{3}\right)$ and $O\left(a^{8}\right)$, when $O(a)=12$.
(ii) (a) Let T be the group of 2×2 invertible matrices over R under usual matrix multiplication. Let G be the subgroup of T generated by the matrices $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Prove that $G \cong D_{4}$ (i.e., G is a dihedral group of degree 4.)
(b) Let $G=\left\{\left.\left(\begin{array}{ll}a & a \\ a & a\end{array}\right) \right\rvert\, a \in Q^{*}\right\}$, where $Q^{*}=Q-\{0\}$. Then prove that G is an abelian group with respect to multiplication of matrices.
(iii) (a) Define center of a group. Find center of S_{3}.
(b) Let H be a subgroup of a group G and $N(H)=\left\{a \in G \mid a H a^{-1}=H\right\}$. Prove that $N(H)$ is a subgroup of G which contains H.
(iv) (a) Find the order of $(1,2,3,4)(5,6,7)$ in S_{7}.
(b) Find all elements of order 8 in $\left(Z_{24},+\right)$.
(c) Let $\left(G,{ }^{*}\right)$ be a group and H be a non-empty finite subset of G. Then show that $\left(H,{ }^{*}\right)$ is a subgroup of $\left(G,{ }^{*}\right)$ if and only if $a \in H, b \in H \Rightarrow a^{*} b \in H$.
(d) Prove that every transposition is its own inverse.
(v) (a) Let H and K be subgroups of a group G. Then show that $H K$ is a subgroup of G if and only if $H K=K H$.
(b) Let $\left(G,{ }^{*}\right)$ be a group and $\left(H,{ }^{*}\right)$ is a subgroup of $\left(G,{ }^{*}\right)$. Let $a, b \in G$ and a relation ρ is defined on G by " $a \rho b$ iff $x * y^{-1} \in H$ ". Prove that ρ is an equivalence relation.
(c) Show that every subgroup of a cyclic group is cyclic.
(vi) (a) Suppose G_{1} and G_{2} are two groups. Then show that the subsets $G_{1} \times\{e\}$ and $\{\mathrm{e}\} \times G_{2}$ of $G_{1} \times G_{2}$ are normal subgroups of $G_{1} \times G_{2}$.
(b) Let G and G^{\prime} be two a groups and $\theta: G \rightarrow G^{\prime}$ be a homomorphism of G onto G^{\prime}. Prove that
(i) If G is abelian, then G^{\prime} is abelian.
(ii) If G is cyclic, then G^{\prime} is cyclic.
(iii) If H is a normal subgroup of G, then $\theta(H)$ is also a normal subgroup of G^{\prime}.
(vii) (a) If H and K both are normal subgroups of a group G such that $H \subseteq K$, then prove that $G / K \cong(G / H) /(K / H)$.
(b) Prove that any infinite cyclic group is isomorphic to the additive group Z of all integers.
(viii) (a) Prove that there are only two (up to isomorphism) groups of order 6.
(b) Let G be a finite cyclic group of order m. Then for every positive divisor d of m, there exists a unique subgroup of G of order d.
(c) Show that every proper subgroup of S_{3} is cyclic.

Group - B

2. Answer any six of the following questions :
(i) If in a group $G, a^{5}=e, a b a^{-1}=b^{2}$ for $a, b \in G$, then show that $O(b)=31$.
(ii) If G be a group of order 8 and G^{\prime} be a group of order 3. Prove that there does not exist a homomorphism from G onto G^{\prime}.
(iii) Show that $(Q,+)$ is not finitely generated.
(iv) Let G be an abelian group and n be a fixed positive integer. Let $H=\left\{a^{n} \mid a \in G\right\}$. Prove that H is a subgroup of G.
(v) Find order of $\left(\left(\begin{array}{ll}1 & 2)\end{array}\right), 4\right)$ in $S_{3} \times Z_{6}$.
(vi) Give an example of a noncommutative group in which every subgroup is normal.
(vii) Prove that a non-commutative group of order 10 must have a subgroup of order 5 .
(viii) Let G be a group and $a, b \in G$. Prove that $O(a b)=O(b a)$.
(ix) Prove that the sub set $H=\{e,(1,2),(3,4),(1,2)(3,4)\}$ of S_{4} forms a non-cyclic subgroup of S_{4}. Is the group S_{4} cyclic?
(x) Let G be a group and $a \in G$. Prove that $N(a)=G$ iff $a \in Z(G)$.
