

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern)

Semester - III

Subject : MATHEMATICS

Paper : C 5 - T

Full Marks : 60

Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC SPACE]

(Theory)

Group - A

1. Answer any *four* of the following questions :

(i) Let *I* be an interval. Define uniform continuity of a function on the interval *I*.

Prove that every uniform continuous function on *I* is continuous on *I*. Is the converse true?

Justify your answer. For a uniform continuous function f on I prove that if $\{x_n\}$ is a Cauchy sequence on I then $\{f(x_n)\}$ is a Cauchy sequence on \mathbb{R} .

2+3+3+4

 $12 \times 4 = 48$

- (ii) (a) Let $f:[a,b] \to R$ be continuous on [a,b] and f''(x) exists for all $x \in (a,b)$. Let a < c < b. Prove that there exists a point β in (a, b). Such that $f(c) = \frac{b-c}{b-a}f(a) + \frac{c-a}{c-b}f(b) + \frac{1}{2}(c-a)(c-b)f''(\beta)$.
 - (b) Let $f: R \to R$ be a differentiable function on R and f'(x) > f(x) for all $x \in R$. If f(0) = 0, prove that f(x) > 0 for all x > 0.

(c) Use Taylor theorem to prove that
$$x - \frac{x^3}{6} < \sin x < x$$
 if $0 < x < \pi$.

• • • • •

 (iii) (a) Verify Maclaurin's infinite series expansion of the following function on the indicated intervals.

$$\log(1+2x) = 2x - \frac{(2x)^2}{2} + \frac{(2x)^3}{3} - \dots, \text{ for } -\frac{1}{2} < x < \frac{1}{2}$$

(b) Let ω denote the space of all sequences in K. Define $d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n (1 + |x_n - y_n|)}$ where $x = \{x_n\}$ and $y = \{y_n\}$ are in ω . Prove

that d defines a metric on ω .

- (c) Find the points of discontinuity of the function $f(x) = (-1)^{[x]}$, $x \in R$. Examine the nature of discontinuity also. 5+5+2
- (iv) (a) Show that in a discrete space X, every subset is open and closed.

(b) Let C denote the set of all complex numbers. Let us consider a mapping

$$d: C \times C \to R \text{ given by } d(z_1, z_2) = \begin{cases} |z_1 + z_2|, & \text{for all } z_1 \neq z_2 \\ 0, & \text{otherwise} \end{cases}$$

Prove that (C, d) is a metric space.

5 + 7

- (v) (a) Let the function *f* be continuous in the closed interval [*a*, *b*] and f(a)f(b) < 0. Show that there exists at least one point *c*, *a* < *c* < *b* such that f(c) = 0.
 - (b) Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be both continuous on [a, b]. Prove that the set $S = \{x \in [a,b]: f(x) \neq g(x)\}$ is an open set in but $S = \{x \in [a,b]: f(x) = g(x)\}$ is a closed set. 6+6

(vi) (a) Let a function f be defined on
$$\mathbb{R}$$
 by $f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$. Show that f

is continuous and differentiable on \mathbb{R} but the derive function f'(x) is not continuous on \mathbb{R} .

(b) State Rolle's theorem for polynomial. Prove that if $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-1}}{2} + a_n = 0$ then the equation $a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n = 0$ has at least one real root between 0 and 1.

(c) Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. If c be an isolated point of D then prove that f is continuous at c. 5+(1+4)+2

- (vii) (a) Let (X, d) be a metric space and $A \subset X$ then prove that the derived set D(A) of the set A contains all its limit points. If $A, B \subset X$. Then prove that $D(A \cap B) \subset D(A) \cap D(B)$.
 - (b) Define open set. Prove that every open sphere is an open set.
 - (c) Define separable metric space with example. (3+2)+(1+4)+2
- (viii) (a) Let l_p be the set of all those sequences $X = \{x_n\}$ of real or complex numbers such that $\sum_{n=1}^{\infty} |x_n|^p$ is convergent. Define a function $d: l_p \times l_p \to \mathbb{R}$ given by $d(x,y) = \{\sum_{n=1}^{\infty} |x_n - y_n|^p\}^{\frac{1}{p}}$ where $x = \{x_n\}, y = \{y_n\} \in l_p$. Prove that d is a metric on l_p .

	(b) Let (X, d) be a metric space. Show that the function d_1 defined by
	$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$ for all $x, y \in X$ is a metric on X.
	(c) Define pseudo metric. 5+5+2
Group - B	
2. Answ	wer any <i>six</i> of the following questions : $2 \times 6 = 12$
(i)	Prove that $\lim_{x \to 0} \cos \frac{1}{x}$ does not exists. 2
(ii)	Let <i>f</i> is continuous on $[a,b]$ and $f(x) \in [a,b]$ for every $x \in [a,b]$ then prove that
	there exists a $c \in [a, b]$ such that $f(c) = c$. 2
(iii)	Prove that a real valued function satisfying Lipschitz's condition on an interval <i>I</i> is uniformly continuous there.
(iv)	Defined Lipschitz's function with example. 2
(v)	Find the extreme values of the function $f(x) = x^{\frac{1}{x}}$ in its domain. 2
(vi)	Prove that if f be defined for all real x such that $ f(x) - f(y) < (x - y)^2$ then f is
	constant. 2
(vii)	Define Pseudo metric with example. 2
(viii)	Discuss the geometrical interpretation of MVT. 2
(ix)	In a metric space (X, d) show that $d(x,y) \ge d(x,z) - d(z,y) $ for any three
	elements $x, y, z \in X$. 2
(x)	Let A be a subset of a metric space (X, d) . If x be a limit point of A, then prove that every neighbourhood of x contains infinite number of points of A. 2