
(ii) (a) Let $f:[a, b] \rightarrow R$ be continuous on $[a, b]$ and $f^{\prime \prime}(x)$ exists for all $x \in(a, b)$. Let $a<c<b$. Prove that there exists a point β in (a, b). Such that $f(c)=\frac{b-c}{b-a} f(a)+\frac{c-a}{c-b} f(b)+\frac{1}{2}(c-a)(c-b) f^{\prime \prime}(\beta)$.
(b) Let $f: R \rightarrow R$ be a differentiable function on R and $f^{\prime}(x)>f(x)$ for all $x \in R$. If $f(0)=0$, prove that $f(x)>0$ for all $x>0$.
(c) Use Taylor theorem to prove that $x-\frac{x^{3}}{6}<\sin x<x$ if $0<x<\pi$.

$$
4+4+4
$$

(iii) (a) Verify Maclaurin's infinite series expansion of the following function on the indicated intervals.

$$
\log (1+2 x)=2 x-\frac{(2 x)^{2}}{2}+\frac{(2 x)^{3}}{3}-\ldots \ldots, \text { for }-\frac{1}{2}<x<\frac{1}{2}
$$

(b) Let ω denote the space of all sequences in K. Define $d(x, y)=\sum_{n=1}^{\infty} \frac{\left|x_{n}-y_{n}\right|}{2^{n}\left(1+\left|x_{n}-y_{n}\right|\right)}$ where $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$ are in ω. Prove that d defines a metric on ω.
(c) Find the points of discontinuity of the function $f(x)=(-1)^{[x]}, x \in R$. Examine the nature of discontinuity also.
(iv) (a) Show that in a discrete space X, every subset is open and closed.
(b) Let C denote the set of all complex numbers. Let us consider a mapping $d: C \times C \rightarrow R$ given by $d\left(z_{1}, z_{2}\right)=\left\{\begin{array}{c}\left|z_{1}+z_{2}\right|, \text { for all } z_{1} \neq z_{2} \\ 0, \text { otherwise }\end{array}\right.$. Prove that (C, d) is a metric space.
(v) (a) Let the function f be continuous in the closed interval $[a, b]$ and $f(a) f(b)<0$. Show that there exists at least one point $c, a<c<b$ such that $f(c)=0$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be both continuous on $[a, b]$. Prove that the set $S=\{x \in[a, b]: f(x) \neq g(x)\}$ is an open set in but $S=\{x \in[a, b]: f(x)=g(x)\}$ is a closed set. 6+6
(vi) (a) Let a function f be defined on \mathbb{R} by $f(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x^{2}}, x \neq 0 \\ 0, \quad x=0 .\end{array}\right.$. Show that f is continuous and differentiable on \mathbb{R} but the derive function $f^{\prime}(x)$ is not continuous on \mathbb{R}.
(b) State Rolle's theorem for polynomial. Prove that if $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\ldots .+\frac{a_{n-1}}{2}+a_{n}=0$ then the equation $a_{0} x^{n}+a_{1} x^{n-1}+\ldots .+a_{n-1} x+a_{n}=0$ has at least one real root between 0 and 1.
(c) Let $D \subset \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be a function. If c be an isolated point of D then prove that f is continuous at c.

$$
5+(1+4)+2
$$

(vii) (a) Let (X, d) be a metric space and $A \subset X$ then prove that the derived set $D(A)$ of the set A contains all its limit points. If $A, B \subset X$. Then prove that $D(A \cap B) \subset D(A) \cap D(B)$.
(b) Define open set. Prove that every open sphere is an open set.
(c) Define separable metric space with example.
(viii) (a) Let l_{p} be the set of all those sequences $X=\left\{x_{n}\right\}$ of real or complex numbers such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}$ is convergent. Define a function $d: l_{p} \times l_{p} \rightarrow \mathbb{R}$ given by $d(x, y)=\left\{\sum_{n=1}^{\infty}\left|x_{n}-y_{n}\right|^{p}\right\}^{\frac{1}{p}}$ where $x=\left\{x_{n}\right\}, y=\left\{y_{n}\right\} \in l_{p}$. Prove that d is a metric on l_{p}.
(b) Let (X, d) be a metric space. Show that the function d_{1} defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$ for all $x, y \in X$ is a metric on X.
(c) Define pseudo metric.

Group - B

2. Answer any six of the following questions :

$$
2 \times 6=12
$$

(i) Prove that $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exists.
(ii) Let f is continuous on $[a, b]$ and $f(x) \in[a, b]$ for every $x \in[a, b]$ then prove that there exists a $c \in[a, b]$ such that $f(c)=c$.
(iii) Prove that a real valued function satisfying Lipschitz's condition on an interval I is uniformly continuous there.
(iv) Defined Lipschitz's function with example.
(v) Find the extreme values of the function $f(x)=x^{\frac{1}{x}}$ in its domain.
(vi) Prove that if f be defined for all real x such that $|f(x)-f(y)|<(x-y)^{2}$ then f is constant.
(vii) Define Pseudo metric with example.
(viii) Discuss the geometrical interpretation of MVT.
(ix) In a metric space (X, d) show that $d(x, y) \geq|d(x, z)-d(z, y)|$ for any three elements $x, y, z \in X$.
(x) Let A be a subset of a metric space (X, d). If x be a limit point of A, then prove that every neighbourhood of x contains infinite number of points of A.

