
(ii) If $\mathrm{D}=\{a-b: a \in A, b \in B\}$ then

$$
\operatorname{Sup} D=\operatorname{Sup} A-\operatorname{Inf} \text { B and } \operatorname{Inf} \text { D }=\operatorname{Inf} A-\operatorname{Sup} B . \quad 5+3+7
$$

2. (a) Prove that a non-empty bounded closed set is either a singleton or a closed interval or can be obtained from a closed interval by removing a countable number of mutually disjoint open intervals.
(b) Let $\mathrm{S}=\left\{x \in R: x^{6}-x^{5} \leq 100\right\}$ and $\mathrm{T}=\left\{x^{2}-2 x: x \in(0, \infty)\right\}$. Prove that the set $\mathrm{S} \cap \mathrm{T}$ is closed and bounded in R .
(c) Prove that every interior point of an infinite set is an accumulation point. Is the converse true. Justify your answer.

$$
6+4+5
$$

3. (a) Prove that the necessary and sufficient condition that x_{0} be an accumulation point of a set E is that there exist a sequence $\left\{x_{n}\right\}$ of distinct real numbers such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$.
(b) Examine whether the following sets are open :
(i) $\mathrm{S} 1=\left\{x \in R: 3 x^{2}-10 x+7>0\right\}$
(ii) $\mathrm{S} 2=\{x \in R: \cos x \neq 0\}$
(c) Define compact set. Show that $\left\{\frac{x^{2}}{1+x^{2}}: x \in R\right\}$ is compact in R. $5+5+5$
4. (a) If $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence such that $x_{-} n=2^{2 n}\left[1-\cos \left(\frac{1}{2^{n}}\right)\right]$ then find $\lim _{n \rightarrow \infty} x_{n}$.
(b) Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence such that $\mathrm{x}_{1}=\mathrm{a}$ and $x_{n+1}=1+\log \left\{\frac{x_{n}\left(x_{n}^{2}+3\right)}{3 x_{n}^{2}+1}\right\}$ where $\mathrm{a} \geq 1$.

Show that $\left\{\mathrm{x}_{\mathrm{n}}\right\}_{\mathrm{n}}$ is convergent. Find the limit.
(c) If $\left\{a_{n}\right\}_{n}$ converges to ' 0 ' and $\left\{b_{n}\right\}$ is bounded then prove that $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$.
(d) If $\lim _{n \rightarrow \infty} x_{n}=u$ and $\lim _{n \rightarrow \infty} y_{n}=w$ and if $u<w$ prove that there exist $\mathrm{m} \in N$ s.t. $x_{n}<y_{n}$ for all $n>m$. $4+5+2+4$
5. (a) Let $\left\{a_{n}\right\}_{n}$ and $\left\{b_{n}\right\}_{n}$ be two convergent sequences where $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then prove that-
(i) $\lim _{n \rightarrow \infty} \sqrt{a_{-} n}=\sqrt{a}$ provided $a \geq 0 \& a_{n} \geq 0 \quad \forall \mathrm{n} \in \mathrm{N}$.
(ii) $\lim _{n \rightarrow \infty} \frac{a_{-} n}{b_{n}}=\frac{a}{b}$ provided $b_{n} \neq 0$ for all $n \in N$ and $b \neq 0$.
(b) If $\left\{x_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=c$ where c is a positive real number, then prove that the sequence $\left\{\frac{x_{n}}{n}\right\}$ converges to c .
(c) If $\mathrm{p}>0$ and a is a fixed real number, show that $\lim _{n \rightarrow \infty} \frac{n^{a}}{(1+p)^{n}}=0$.

$$
6+5+4
$$

6. (a) Find $\overline{\lim } u_{n}$ and $\underline{\lim } u_{n}$ where $u_{n}=$
(i) $(-1)^{n}\left(1+\frac{1}{n}\right)$
(ii) $\left(\cos \frac{n \pi}{4}\right)^{(-1)^{n}}$
(b) If $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ be a cauchy sequence in R having a sub-sequence converging to a real number I, prove that $\lim _{n \rightarrow \infty} u_{n}=I$.
(c) Let $0<a \leq 1, \mathrm{x}_{1}=\frac{\mathrm{a}}{2}$ and $x_{n+1}=\frac{1}{2}\left(x_{n}^{2}+a\right) \forall n \in N$. Show that the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is convergent and find its limit.
(d) Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}\{(2 n+1)(2 n+2) \ldots .(2 n+n)\}^{\frac{1}{n}}=\frac{27}{4 e} . \quad 4+4+4+3$
7.

(a) If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series where $a_{n}=\frac{(-1)^{n} \cdot n}{2^{n}}$ and $\mathrm{b}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}}}{\log (\mathrm{n}+1)} \forall \mathrm{n} \in \mathrm{N}$. Prove that $\sum \mathrm{a}_{\mathrm{n}}$ is absolutely convergent but $\sum \mathrm{b}_{\mathrm{n}}$ is conditionally convergent.
(b) If $\sum u_{n}$ be a convergent series of positive real numbers, prove that $\sum u_{2 n}$ is convergent.
(c) Test the series $\sum u_{n}$ for convergence where $u_{n}=\frac{1}{n \log n(\log \log n)}$.

$$
6+4+5
$$

8. (a) Test the convergence of the following series :
(i) $\frac{1}{\log 2}+\frac{1}{\log 3}+\frac{1}{\log 4}+\ldots \ldots .$.
(ii) $\frac{1}{4}+\left(\frac{1}{4}\right)^{1+\frac{1}{3}}+\left(\frac{1}{4}\right)^{1+\frac{1}{3}+\frac{1}{5}}+\ldots \ldots$.
(b) Test for convergence the series $1+\frac{2^{2}}{3^{2}}+\frac{2^{2} \cdot 4^{2}}{3^{2} \cdot 5^{2}}+\frac{2^{2} \cdot 4^{2} \cdot 6^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2}}+\ldots \ldots .$.
(c) Test the convergence of the series $\sum a_{n}$ where

$$
\begin{aligned}
\mathrm{a}_{-} \mathrm{n}= & \left\{2^{-n-\sqrt{n}}, \text { if } \mathrm{n}\right. \text { is odd } \\
& \left\{2^{-n+\sqrt{n}}, \text { if } \mathrm{n}\right. \text { is even. }
\end{aligned}
$$

