



**Question Paper** 

## **B.Sc. Honours Examinations 2021**

(Under CBCS Pattern)

## Semester - II

## **Subject : MATHEMATICS**

Paper : C 3-T

**Real Analysis** 

Full Marks : 60 Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Answer any *four* of the following questions :

1.

 $4 \times 15 = 60$ 

(a) Define enumerable set. Prove that the set of all sequences whose elements are 0 & 1 is non-enumerable.

- (b) Show that an open interval (a, b) is equivalent to another open interval (c, d).
- (c) Let A and B be two non-empty bounded sets of real numbers. Prove that-
  - (i) If  $C = \{xy : x \in A, y \in B, x > 0, y > 0\}$

then Sup C = Sup A.Sup B

(ii) If  $D = \{a - b : a \in A, b \in B\}$  then

$$Sup D = Sup A - Inf B and Inf D = Inf A - Sup B. \qquad 5 + 3 + 7$$

- (a) Prove that a non-empty bounded closed set is either a singleton or a closed interval or can be obtained from a closed interval by removing a countable number of mutually disjoint open intervals.
  - (b) Let  $S = \{ x \in R : x^6 x^5 \le 100 \}$  and  $T = \{x^2 2x : x \in (0, \infty) \}$ . Prove that the set  $S \cap T$  is closed and bounded in R.
  - (c) Prove that every interior point of an infinite set is an accumulation point. Is the converse true. Justify your answer. 6+4+5

3. (a) Prove that the necessary and sufficient condition that x<sub>0</sub> be an accumulation point of a set E is that there exist a sequence {x<sub>n</sub>} of distinct real numbers such that lim n→∞ x<sub>n</sub> = x<sub>0</sub>.

(b) Examine whether the following sets are open :

(i) S1 = { 
$$x \in R : 3x^2 - 10x + 7 > 0$$
 }

(ii)  $S2 = \{ x \in R : \cos x \neq 0 \}$ 

4.

(c) Define compact set. Show that  $\left\{\frac{x^2}{1+x^2} : x \in R\right\}$  is compact in R. 5+5+5

(a) If  $\{x_n\}$  be a sequence such that  $x_n = 2^{2n} \left[ 1 - \cos\left(\frac{1}{2^n}\right) \right]$  then find  $\lim_{n \to \infty} x_n$ .

(b) Let  $\{x_n\}$  be a sequence such that  $x_1 = a$  and  $x_{n+1} = 1 + \log\left\{\frac{x_n(x_n^2 + 3)}{3x_n^2 + 1}\right\}$ where  $a \ge 1$ .

Show that  $\{x_n\}_n$  is convergent. Find the limit.

- (c) If  $\{a_n\}_n$  converges to '0' and  $\{b_n\}$  is bounded then prove that  $\lim_{n \to \infty} (a_n b_n) = 0.$
- (d) If  $\lim_{n \to \infty} x_n = u$  and  $\lim_{n \to \infty} y_n = w$  and if u < w prove that there exist  $m \in N \text{ s.t. } x_n < y_n$  for all n > m. 4 + 5 + 2 + 4

(a) Let  $\{a_n\}_n$  and  $\{b_n\}_n$  be two convergent sequences where  $\lim_{n \to \infty} a_n = a$  and  $\lim_{n \to \infty} b_n = b$ , then prove that—

- (i)  $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$  provided  $a \ge 0 \& a_n \ge 0 \forall n \in \mathbb{N}$ .
- (ii)  $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$  provided  $b_n \neq 0$  for all  $n \in N$  and  $b \neq 0$ .

(b) If  $\{x_n\}$  be a sequence of real numbers such that  $\lim_{n \to \infty} (x_{n+1} - x_n) = c$  where c is a positive real number, then prove that the sequence  $\left\{\frac{x_n}{n}\right\}$  converges to c.

(c) If p > 0 and a is a fixed real number, show that  $n \to \infty \frac{n^a}{(1+p)^n} = 0$ .

6 + 5 + 4

6. (a) Find  $\overline{\lim} u_n$  and  $\underline{\lim} u_n$  where  $u_n =$ 

(i) 
$$(-1)^n \left(1 + \frac{1}{n}\right)$$
 (ii)  $\left(\cos\frac{n\pi}{4}\right)^{(-1)^n}$ 

(b) If  $\{u_n\}$  be a cauchy sequence in R having a sub-sequence converging to a real number I, prove that  $\lim_{n \to \infty} u_n = I$ .

5.

(c) Let 
$$0 \le a \le l$$
,  $x_1 = \frac{a}{2}$  and  $x_{n+1} = \frac{1}{2} (x_n^2 + a) \forall n \in N$ . Show that the sequence  $\{x_n\}$  is convergent and find its limit.  
(d) Prove that  $\lim_{n \to \infty} \frac{1}{n} \{(2n+1)(2n+2)...(2n+n)\}^{\frac{1}{n}} = \frac{27}{4e}$ .  $4 + 4 + 4 + 3$   
7. (a) If  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  be two series where  $a_n = \frac{(-1)^n \cdot n}{2^n}$  and  $b_n = \frac{(-1)^n}{\log(n+1)} \forall n \in N$ . Prove that  $\sum a_n$  is absolutely convergent but  $\sum b_n$  is conditionally convergent.  
(b) If  $\sum u_n$  be a convergent series of positive real numbers, prove that  $\sum u_{2n}$  is convergent.  
(c) Test the series  $\sum u_n$  for convergence where  $u_n = \frac{1}{n \log n (\log \log n)}$ .  
 $6 + 4 + 5$   
8. (a) Test the convergence of the following series :  
(i)  $\frac{1}{\log 2} + \frac{1}{\log 3} + \frac{1}{\log 4} + \dots$   
(ji)  $\frac{1}{4} + (\frac{1}{4})^{1+\frac{1}{3}} + (\frac{1}{4})^{1+\frac{1}{3}+\frac{1}{3}} + \dots$   
(b) Test for convergence the series  $1 + \frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \dots$   
(c) Test the convergence of the series  $\sum a_n$  where  $a_n = \{2^{-n+\sqrt{n}}, \text{ if n is odd} \\ \{2^{-n+\sqrt{n}}, \text{ if n is even.}$   $6 + 4 + 5$