বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER-C2T
ALGEBRA
Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

1. (a) If $a_{1}, a_{2}, \ldots a_{n}$ be all positive real numbers and $S=a_{1}+a_{2}+\ldots+a_{n} ;$ Prove that $\left(\frac{s-a_{1}}{n-1}\right)\left(\frac{s-a_{2}}{n-1}\right) \ldots\left(\frac{s-a_{n}}{n-1}\right)$ $>a_{1} a_{2} \ldots a_{n}$ unless $a_{1}=a_{2}=\ldots=a_{n}$
(b) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $\mathrm{t}^{4}+\mathrm{t}^{2}+1=0$ and n is a positive integer, prove that $\alpha^{2 n+1}+\beta^{2 n+1}+\gamma^{2 n+1}+\delta^{2 n+1}=0$.
(c) Find the relation among the coefficients of the equation $a x^{3}+3 b x^{2}$ $+3 c x+d=0$ if its roots be in arithmetic progression. $4+5+3$
2. (a) Let $C[0,1]$ be the set of all real continuous functions on the closed interval $[0,1]$ and T be a mapping from $c[0,1]$ to R defined by $T(f)=\int_{0}^{1} f(x) d x, f \in c[0,1]$. Show that T is a linear transformation.
(b) Let v be a real vector space with a basis $\left\{\vec{\alpha}_{1}, \vec{\alpha}_{2}, . ., \vec{\alpha}_{n}\right\}$,

Examine if $\left\{\vec{\alpha}_{1}+\vec{\alpha}_{2}, \vec{\alpha}_{2}+\vec{\alpha}_{3}, \ldots, \vec{\alpha}_{n}+\vec{\alpha}_{1}\right\}$ is also a basis of V.
(c) Find $K \in R$ so that the set $\mathrm{S}=\{(1,2,1)$, $(\mathrm{k}, 3,1),(2, \mathrm{k}, 0)\}$ is linearly dependent in $1 R^{3}$.
$4+5+3$
3. (a) Prove that $6 \mid n(n+1)(n+2), n \in \mathbb{Z}$.
(b) Use the theory of congruence to find the remainder when the sum $1^{5}+2^{5}+3^{5}+\ldots+100^{5}$ is divided by 5. $5+5+2$
(c) Find the values of a for which the equation $a x^{3}-6 x^{2}+9 x-4=0$ may have multiple roots.
$5+5+2$
4. (a) Find x if the rank of the matrix $\left(\begin{array}{cccc}1 & 3 & -3 & x \\ 2 & 2 & x & -4 \\ 1 & 1-x & 2 x+1 & -8-3 x\end{array}\right)$ be 2 .
(b) Find the value of λ for which the system of equations
$2 x_{1}-x_{2}+x_{3}+x_{4}=1, x_{1}+2 x_{2}-x_{3}+4 x_{4}=2, x_{1}+7 x_{2}-4 x_{3}+11 x_{4}$ $=\lambda$ is solvable.
(c) If $\alpha+\beta+\gamma=0$, Prove that $\frac{\alpha^{5}+\beta^{5}+\gamma^{5}}{5}=\frac{\alpha^{3}+\beta^{3}+\gamma^{3}}{3} \cdot \frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{2}$ $4+4+4$
5. (a) If α, β, γ be the roots of the equation $x^{3}-2 x^{2}+3 x-1=0$,
find the equation whose roots are $\frac{\beta \gamma-\alpha^{2}}{\beta+\gamma-2 \alpha}, \frac{\gamma \alpha-\beta^{2}}{\gamma+\alpha-2 \beta}, \frac{\gamma \beta-\gamma^{2}}{\alpha+\beta-2 \gamma}$
(b) Solve : $(1+x)^{2 n}+(1-x)^{2 n}=0$
(c) If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$, prove that $S_{n}>\frac{2 n}{n+1}$ if $\mathrm{n}>1$.
6. (a) Show that $(2 \mathrm{n}+1)^{2} \equiv 1(\bmod 8)$ for any natural number n .
(b) Use Cayley Hamiltan theorem, to find A^{50} where $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(c) Find the dimension of the subspace $S \cap T$ of \mathbb{R}^{4} where

$$
\begin{align*}
& S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+y+z+w=0\right\} . \\
& T=\left\{(x, y, z, w) \in \mathbb{R}^{4}: 2 x+y-z+w=0\right\} .
\end{align*}
$$

7. (a) If the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in A. P where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are real numbers, prove that $p^{2} \geq 3 q$.
(b) Find all values of $i^{1 / 7}$.
(c) Prove that for any two integers U and $\mathrm{V}>0$, there exist two unique integers m and n such that

$$
U=m V+n, \quad o \leq n<V
$$

8. (a) If $a \equiv b(\bmod \mathrm{~m})$ and $a \equiv c(\bmod n)$, prove that $b \equiv c(\bmod d)$ where $\mathrm{d}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$.
(b) Find the basis for the column space of the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

(c) Determine the conditions for which the system of equations

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=b \\
& x+a y+3 z=b+1
\end{aligned}
$$

has unique solution, many solutions and no solution.
9. Find the general values of the equation $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=-i$, where θ is real.
10. If the equation $x^{4}+p x^{2}+q x+r=0$ has three equal roots then show that $8 p^{3}+27 q^{2}=0$.
11. Solve the equations $x+p y+p^{2} z=p^{3}, x+q y+q^{2} z=q^{3}, x+r y+r^{2} z=r^{3}$.
12. Find the equation whose roots are cubes of the roots of the cubic $x^{3}+3 x^{2}+2=0$.
13. Prove that $n^{2}+2$ is not divisible by 4 for any integer n.
14. Show that the set of all points on the line $y=m x$ forms a sub space of the vector space \mathbb{R}^{2}.
15. Find the number of divisors and their sum of 10800 .
16. Find the greatest value of $x y z$ where x, y and z are positive real numbers satisfying $x y+y z+z x=27$.
17. If A and B be two square invertible matrices, then prove that $A B$ and $B A$ have the same eigen values.
18. Show that eigen values of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$ are all real.

