

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER-C1T

CALCULUS , GEOMETRY AND DIFFERENTIAL EQUATION
Full Marks : 60
Time : 3 Hours

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.
4×12

1. (a) Find the equation of the asymptotes of the curve

$$
r^{n} f_{n}(\theta)+r^{n-1} f_{n-1}(\theta)+\ldots+f_{0}(\theta)=0
$$

(b) If $I_{n}=\int_{0}^{\pi / 2} \cos ^{n-2} x \operatorname{Sin} n x d x$ show that

$$
\begin{align*}
& 2(\mathrm{n}-1) \mathrm{I}_{\mathrm{n}}=1+(\mathrm{n}-2) \mathrm{I}_{\mathrm{n}-1} \text { and hence deduce } \\
& I_{n}=\frac{1}{n-1}
\end{align*}
$$

2. (a) Circles are described on the double ordinates of the parabola $y^{2}=4 a x$ as diameters. Prove that the envelope is the parabola $y^{2}=4 a(x+a)$.
(b) If $y=\sin \left(m \cos ^{-1} \sqrt{x}\right)$ then prove that $\lim _{x \rightarrow 0} \frac{y_{n+1}}{y_{n}}=\frac{4 n^{2}-m^{2}}{4 n+2}$.
(c) Find a,b,c such that $\frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x} \rightarrow 2$ as $x \rightarrow 0$. $4+4+4$
3. (a) Show that the arc of the upper half of the cardiode $r=a(1-\cos \theta)$ is bisected at $\theta=\frac{2}{3} \pi$. Find also the perimeter of the curve.
(b) Show that the curve $r e^{\theta}=a(1+\theta)$ has no point of inflexion.
(c) Find the asymptotes of the parametric curve $x=\frac{t^{2}+1}{t^{2}-1}$ and $y=\frac{t^{2}}{t-1}$.
4. (a) Show that feet of the normals from the point (α, β, v) to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lie on the intersection of the ellipsoid and the cone $\frac{\alpha a^{2}\left(b^{2}-c^{2}\right)}{x}+\frac{\beta b^{2}\left(c^{2}-a^{2}\right)}{y}+\frac{v c^{2}\left(a^{2}-b^{2}\right)}{z}=0$.
(b) Find the equation of the right circular cylinder whose axis is $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$ and radius is 2.
5. (a) Prove that $\cosh (x+y)=\cosh x$ coshy $+\sinh x$ sinhy.
(b) Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the radius of their common circle is $\frac{r_{1} r_{2}}{\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}}}$.
(c) Find the polar equation of the normal to the conic $\frac{1}{r}=1+e \cos \theta, e>0$. $2+5+5$
6. (a) Find the equation of the generator of the cone $x^{2}+y^{2}=z^{2}$ through the point $(3,4,5)$.
(b) Given that the asteroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$ is the envelope of the family of ellips $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, show that $\mathrm{a}+\mathrm{b}=\mathrm{c}$.
(c) State the existence and uniqueness theorem for the solution of ordinary differential equation.
7. (a) Solve : $x \frac{d y}{d x}-y=x \sqrt{x^{2}+y^{2}}$.
(b) If m and n are positive integers, show that

$$
\int_{a}^{b}(x-a)^{m}(\mathrm{~b}-x)^{n} d x=\frac{m!n!}{(m+n+1)!}(b-a)^{m+n+1}
$$

(c) Solve $y=2 p x+y^{2} p^{3}$ and find the general and singular solutions.
8. (a) Compute the length of the curve $x=2 \cos \theta, y=\sin 2 \theta, 0 \leq \theta \leq \pi$.
(b) Find the points of inflection on the curve $r\left(\theta^{2}-1\right)=a \theta^{2}$
(c) If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x, n$ beine positive integer greater than 2 , prove that

$$
(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}
$$

Answer any six questions.

9. Find the value of $\lim _{x \rightarrow \infty}\left[a_{0} x^{m}+a_{1} x^{m-1}+\ldots .+a_{m}\right]^{1 / x}$, in being a positive integer and $a_{0} \neq 0$.
10. Let $I_{n}=\int_{0}^{1}(\ln x)^{h} d x$. Show that $I_{n}=(-1)^{n} \underline{n}, \mathrm{n}$ being positive integer.
11. The curves $y=x^{n}, y^{m}=x(m, n>0)$ meet at $(0,0)$ and $(1,1)$. Find the area between these two curves.
12. Find α if x^{α} be an integrating factor of $\left(x-y^{2}\right) d x+2 x y d y=0$.
13. Find the curve for which the curvature is zero at every point and which passes through the point $(0,0)$ where $\frac{d y}{d x}=3 / 2$.
14. Solve the differential equation :

$$
4 x^{3} y d x+\left(x^{4}+y^{4}\right) d y=0
$$

15. Generate a reduction formula for $\int \tan ^{n} x d x, n \in Z^{+}$and $n>1$.
16. Find the equations of the straight lines in which the plane $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=0$ cuts the cone $4 \mathrm{x}^{2}-\mathrm{y}^{2}+3 \mathrm{z}^{2}=0$.
17. Find the asymptote (if any) of the curve $y=a \log \left[\sec \left(\frac{x}{a}\right)\right]$.
18. On the ellipse $r(5-2 \cos \theta)=21$, find the point with the greatest radius vector.
