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Answer any four questions from the following. 4×15=60

1. (a) Define irreducible element in an integral domain. Prove that every prime element is

irreducible in an integral domain. 2+4

(b) Prove that 2 1x   is irreducible over the integer modulo 7. 3

(c) Find the gcd of the polynomials  f x  and  g x  in the polynomial ring  R x , where

      5 4 32 1f x x x x x     ,      4 22 2g x x x    and 5R   . 6

2. (a) Prove that the ring of Gaussian integers  ,R i m in m n        is a Euclidean

domain. 5
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(b) Show that an element x in a Euclidean domain is a unit if and only if    1d x d . By

using this relation find all units in the ring i   of Gaussian integers. 3+2

(c) (i) Let R be an integral domain with unit element. Then prove that units of  R x  are

same as units of R.

(ii) Give an example of two polynomials      ,f x g x R x  such that

     deg deg degfg f g  . 3+2

3. (a) Let V be a finite dimensional vector space over F. Let V̂  be the dual of V and ˆ̂V  be

the double dual of V. Define 
ˆ̂:V V   by

  vv T v V   

where ˆ:vT V F  is such that     ˆ
vT f f v f V   . Then prove that   is an

isomorphism from V onto ˆ̂V . 6

(b) If V is a finite dimensional vector space and 1 2v v  are in V, prove that there is an

ˆf V  such that    1 2f v f v . 4

(c) Let  1 2 3, ,S      be the basis of 3R  defined by

     1 2 31, 0, 1 , 1,1,1 , 2, 2, 0       . Find the dual basis of S. 5

4. (a) Define transpose of a linear transformation.

If :T V W  be a linear transformation and V, W are finite dimensionl, then show that

(i) rank of T = rank of tT .

(ii) range of tT  = annihilator of null space of T. 2+3+3

(b) If W is a subspace V, then define annihilator of W, i.e.,  A W . Show that  A W  is a

subspace of V̂ . 1+3



(c) Let V be finite dimensional vector space over F and  T A V  be an invertible linear

transormation whose minimal polynomial is   0 1 ... np x x x     . Prove that

0 0  . 3

5. (a) Find minimal polynomial of the matrix 

0 0 0

1 0 9

0 1 6

 
  
 
 

. 5

(b) What is the minimal polynomial of a non-zero.

(i) nilpotent matrix ?

(ii) idempotent matrix ? 3+3

(c) For the matrix 

1 2 0

2 1 6

2 2 3

A

 
   
  

, find P such 1P AP is a diagonal matrix. 4

6. (a) If 

2 6 6

0 3 5

0 3 1

A

  
   
  

, find eigen values of 4 2 5A A A  . 5

(b) Let V be a vector space with basis  1 2 3, ,v v v  and let :T V V  be defined by

     1 1 2 1 2 3 1 2 33 , 2 , 2T v v T v v v T v v v v       .

Then find characteristic polynomial of T and verify Cayley Hamilton Theorem. 6

(c) Let V be a two dimensional vector space over the field R of real numbers. Let T be a
linear operator on V such that

 1 1 2T v v v   ,

 2 1 2T v v v    , , , , R     where  1 2,v v  is a basis of V.

Find the condition that 0 be a characteristic root of T. 4



7. (a) Define adjoint of a linear transformation T.

Prove that adjoint T* of T satisfies the following properties

(i)  * * *
1 2 1 2T T T T  

(ii)  * * *
1 2 2 1TT T T

(iii)  **T T . 1+2+2+2

(b) If   and   be any two vectors in an inner product space V, then show that

      . 5

(c) If N is a normal linear transformation and   0N v   for v V , then prove that

 * 0N v  . 3

8. (a) Apply the Gram-Schmidt process to the vectors (1, 0, 1), (1, 0, –1) and (1, 3, 4) to
obtain an orthonormal basis for 3R  with the standard inner product. 6

(b) Prove that characteristic roots of a Hermitian linear transformation are all real. 4

(c) Reduce the following quadratic form to normal form and then examine whether the
quadratic form is positive definite or not.

2 2 26 18 4 12x y z yz zx    . 5

_____________


