

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examination 2021

(Under CBCS Pattern)

Semester - VI

Subject: MATHEMATICS

Paper: C 13-T

(Metric Spaces and Complex Analysis)

Full Marks : 60 Time : 3 Hours

Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Answer any *four* questions from the following. $4 \times 15 = 60$

(a) Let (X, d) be a metric space and A be a non-empty subset of X. Then prove that a point x ∈ A is a limit point of the set A in (X, d) if and only if there exists a sequence {x_n} of distinct points of A-{x} satisfying lim_{n→∞} x_n = x.

(b) Define Cauchy sequence. Prove that a Cauchy sequence in a metric space is convergent if and only if it has a convergent subsequence.
8+7 2. (a) Define complete metric space. Prove that the metric (X, d) is complete, where, X is the space of all bounded sequences {α_n} in R and the metric d is defined as

$$d(\{\alpha_n\}, \{\beta_n\}) = \sup\{|\alpha_n - \beta_n|: n \in N\}.$$

- (b) Prove that the composition of two continuous functions is continuous in metric space. 8+7
- 3. (a) Define uniform continuity of a function on a metric space. Let (X, d_x) and (Y, d_y) be two metric spaces and f:(X, d_x)→(Y, d_y) is a uniformly continuous function. If {x_n} is a Cauchy sequence of elements of (X, d_x) then prove that {f(x_n)} is a Cauchy sequence of elements of (Y, d_y).
 - (b) Consider the metric space, (R, d), where R is the set of real numbers and d(x, y) = |x-y|. Then prove that the following mapping $f:(R, d) \to (R, d)$ is continuous only at the point $\frac{1}{2}$.

$$f(x) = \begin{cases} x, & x \in Q\\ 1-x, & x \in \overline{Q} \end{cases}$$

where Q is the set of rational numbers.

4. (a) What do you mean by connected set? Let (X, d) be a metric space and {A_i: i ∈ I}
be a family of connected sets such that ∩_{i∈I} A_i ≠ Ø, then prove that U_{i∈I} A_i is connected.

7 + 8

- (b) Prove that the continuous image of a compact metric space is compact. 8+7
- 5. (a) If a series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges to, f(z), at all points interior to some circle $|z-z_0| = R$ then prove that it is the power series expansion for f in powers of $z-z_0$.

- (b) Let two complex valued functions f(z) and g(z), z = x + iy, be defined on $D \subseteq C$ except possibly at $z_0 = x_0 + iy_0$, such that $\lim_{z \to z_0} f(z) = l_1$ and $\lim_{z \to z_0} g(z) = l_2$, then prove that $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{l_1}{l_2}$, provided $l_2 \neq 0$. 8+7
- 6. (a) Let $D = \{z : |z| < 1\}$ and the sequence of functions $\{f_n(z)\}$ be defined on D, such that, $f_n(z) = z^{n-1}$, $n \in N$, then prove that the series $\sum_{n=1}^{\infty} f_n(z)$ is convergent pointwise on D but not uniformly on D.
 - (b) Prove that the function $f(z) = \overline{z}$ is continuous everywhere but not differentiable everywhere.
 - (c) Suppose a function f(z) be analytic throughout a disk, $|z| < R_0$, then prove that f(z) has the following power series representation.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} z^n, \ |z| < R_0.$$
 5+4+6

7. (a) Let f be analytic inside and on a closed contour C, taken in the positive sense and z_0 be a point inside C, then prove that

$$\int_{C} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^n(z_0), \ n = 0, 2, 3, \dots$$

- (b) State and prove a sufficient condition of differentiability of a function f at a point, z_0 in the complex plane.
- (c) Show that the function $u = \cos x + \cosh y$ is harmonic and find its harmonic conjugate. 6+6+3
- 8. (a) Let $|f(z)| \le |f(z_0)|$ at each point, z, in some neighborhood $|z-z_0| < \varepsilon$, of z_0 in which f is analytic, then prove that f(z) has a constant value $f(z_0)$ throughout the neighborhood.
 - (b) If the function f(z) is analytic and not constant in a given domain D then prove that |f(z)| has no maximum value in D.