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Answer any four questions from the following. 4×15=60

1. (a) Let  ,X d  be a metric space and A be a non-empty subset of X. Then prove that a

point x A  is a limit point of the set A in  ,X d  if and only if there exists a

sequence  nx  of distinct points of  A x  satisfying limn nx x  .

(b) Define Cauchy sequence. Prove that a Cauchy sequence in a metric space is convergent

if and only if it has a convergent subsequence. 8+7
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2. (a) Define complete metric space. Prove that the metric  ,X d  is complete, where, X is

the space of all bounded sequences  n  in R and the metric d is defined as

      , sup :n n n nd n N      .

(b) Prove that the composition of two continuous functions is continuous in metric space.

8+7

3. (a) Define uniform continuity of a function on a metric space. Let  , xX d  and  , yY d

be two metric spaces and    : , ,x yf X d Y d  is a uniformly continuous function. If

 nx  is a Cauchy sequence of elements of  , xX d  then prove that   nf x  is a

Cauchy sequence of elements of  , yY d .

(b) Consider the metric space,  ,R d , where R is the set of real numbers and

 ,d x y x y  . Then prove that the following mapping    : , ,f R d R d  is

continuous only at the point 
1

2
.
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where Q is the set of rational numbers. 7+8

4. (a) What do you mean by connected set? Let  ,X d  be a metric space and  :iA i I

be a family of connected sets such that i I iA   , then prove that i I iA  is

connected.

(b) Prove that the continuous image of a compact metric space is compact. 8+7

5. (a) If a series  00

n

nn a z z
   converges to,  f z , at all points interior to some circle

0z z R   then prove that it is the power series expansion for f in powers of 0z z .



(b) Let two complex valued functions  f z  and  g z , z x iy  , be defined on

D C  except possibly at 0 0 0z x iy  , such that  
0 1limz z f z l   and

 
0 2limz z g z l  , then prove that 

 
 0

1

2

lim z z

f z l

g z l  , provided 2 0l  . 8+7

6. (a) Let  : 1D z z   and the sequence of functions   nf z  be defined on D, such

that,   1n
nf z z  , n N , then prove that the series  1 nn f z

  is convergent point-

wise on D but not uniformly on D.

(b) Prove that the function  f z z  is continuous everywhere but not differentiable

everywhere.

(c) Suppose a function  f z  be analytic throughout a disk, 0z R , then prove that

 f z  has the following power series representation.
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7. (a) Let f be analytic inside and on a closed contour C, taken in the positive sense and 0z

be a point inside C, then prove that
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(b) State and prove a sufficient condition of differentiability of a function f at a point, 0z  in

the complex plane.

(c) Show that the function cos coshu x y   is harmonic and find its harmonic conjugate.
6+6+3

8. (a) Let    0f z f z  at each point, z, in some neighborhood 0z z   , of 0z  in

which f is analytic, then prove that  f z  has a constant value  0f z  throughout the

neighborhood.

(b) If the function  f z  is analytic and not constant in a given domain D then prove that

 f z  has no maximum value in D.
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