

Question Paper

B.Sc. Honours Examinations 2021

(Under CBCS Pattern)

Semester - V

Subject : MATHEMATICS

Paper : C 12 - T

Full Marks : 60

Time : 3 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

[GROUP THEORY-II]

1. Answer any *four* questions :

12×4=48

- (a) (i) Prove that $Aut(\mathbb{Z}_n, +)$ is isomorphic with U_n (the group of units modulo n).
 - (ii) Is the statement "S3× $\mathbb{Z}/12\mathbb{Z}$ is isomorphic with $\mathbb{Z}/6\mathbb{Z}\times\mathbb{Z}/12\mathbb{Z}$ ".—True or False? Justiy your answer.

(iii) Let G be a group acting on a non-empty set S and $|G| = p^n$ where p is a prime and n is a natural number. Show that $|S| \equiv_p |S_0|$ where $S_0 = \{a \in S \mid ga = a f \text{ or all } g \in G\}.$ 6+2+4=12

Γ			
	(b)	(i)	Let <i>H</i> and <i>K</i> be two characteristic subgroups of a group <i>G</i> . Prove that $H \cap K$ and <i>HK</i> are also characteristic subgroups of <i>G</i> .
		(ii)	Prove that the direct product $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic with \mathbb{Z}_{mn} if and only if <i>m</i> and <i>n</i> are co-prime.
		(iii)	Let G be a group acting on a non-empty set S and G_x denote the stabilizer of
			$x \in G$. Then prove that $G_{bx} = bG_x b^{-1}$ for any $b \in G$. (2+2)+4+4=12
	(c)	(i)	For any group $(G;)$, prove that $Inn(G)$ is a normal subgroup of $(Aut(G), o)$ where $Inn(G)$ denotes the set of all inner automorphisms of G .
		(ii)	Let $\alpha \in S_4$ be a <i>k</i> -cycle. Then prove that $\beta \in S_4$ is conjugate with α if and only if β is also a <i>k</i> -cycle.
			only it p is also a k-cycle.
		(iii)	Using (<i>ii</i>) deduce class equation of S_4 . 2+6+4=12
	(d)	(i)	Let a be non-zero rational number. Prove that $\phi \in Aut(\mathbb{Q}, +)$ where $\phi : (\mathbb{Q}, +) \rightarrow (\mathbb{Q}, +)$ is defined by $\phi(q) = qa$ for all $q \in \mathbb{Q}$. Hence prove that the only characteristic subgroups of $(\mathbb{Q}, +)$ are $\{0\}$ and \mathbb{Q} .
		(ii)	Prove that if G is a finite p-group then $Z(G)$ must be non-trivial.
		(iii)	Let <i>G</i> be a group of order <i>pq</i> where <i>p</i> , <i>q</i> are both primes with $p > q$. If <i>q</i> does not divide $(p-1)$ then prove that <i>G</i> is cyclic. $(3+2)+3+4=12$
	(e)	(i)	For any group $(G;)$ prove that $G/Z(G)$ is isomorphic with $Inn(G)$ where $Inn(G)$ denotes the set of all inner automorphisms of G .
		(ii)	Find the number of elements o order 5 in the direct product $\mathbb{Z}15 \times \mathbb{Z}5$.
		(iii)	Let <i>G</i> be a group and <i>H</i> be a subgroup of <i>G</i> . Let $S = \{aH \mid a \in G\}$. Prove that there exists a homomorphism $\psi : G \rightarrow A(S)$ such that ker $\psi \subseteq H$. 4+4+4=12
	(f)	(i)	Let G be a finite group and H be a subgroup of G of index p, where p is the smallest prime dividing $ G $. Show that H is a normal subgroup of G.
		(ii)	Show that every non-cyclic group o order 21 contains exactly 14 elements of order 3. 6+6=12

- (g) (i) Describe all the abelian groups of order 1200 up to isomorphism.
 - (ii) Using Sylow's theorem, show that every group of order 45 has a normal subgroup of order 9.
 - (iii) Prove that any group of order p^2 is abelian where p is a prime.
 - (iv) Can 4 = 1 + 1 + 2 be a class equation for a group? Justify your answer.

5+2+3+2=12

 $2 \times 6 = 12$

- (h) (i) Define commutator subgroup of a group G. Find the commutator subgroup of S_3 .
 - (ii) Give example (with explanation) of a non-cyclic commutative group of order 28.
 - (iii) Using Sylow's theorem, show that no group of order 108 is a simple group. (2+3+2+5=12)

Group-B

2. Answer any *six* questions :

- (a) Prove that the set of all automorphisms of a group (G;) form a group with respect to the composition of mappings.
- (b) Define characteristic subgroup with an example.
- (c) Consider two subgroups $H_1 = \{e, (1 2)\}$ and $H_2 = \{e, (1 2 3), (1 3 2)\}$ of S_3 . Can S_3 be expressed as an internal direct product of the subgroups H_1 and H_2 ? Justify your answer with proper reasons.
- (d) Consider the direct product $S_3 \times S_3$. Does it contain an element of order 9? Give reasons in support of your answer.
- (e) Using the Fundamental theorem of finite abelian groups, describe all abelian groups o order 2⁴ up to isomorphism.
- (f) Consider the conjugation action of the group $(\mathbb{Z}_3, +)$ on itself. With respect to this group action, find all distinct orbits.
- (g) Give an example of an infinite *p*-group.
- (h) State Sylow's third theorem.

- (i) Define a simple group with an example.
- (j) Let G be a group of order 69. Prove that Z(G) is isomorphic with \mathbb{Z}_{69} .