2x10=20

Full Marks: 40

PG CBCS M.Sc. Semester-II Examination, 2021 PHYSICS PAPER: PHS 202

Time: 2 Hour

Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable

202.1: Solid State II

Marks: 20

Answer any <u>TWO</u> questions of the following:

1.	Derive London equations. Explain their significance.	6
	What do you mean by magnetic levitation?	2
	Explain the terms: i. Persistant current, ii. Critical current.	2
2.	What is a Josephson junction?	2
	Explain ac and dc Josephson effect.	3+3
	State some application of superconductors.	2
3.	What do you mean by Meissner effect?	2
	Give a brief description about the order of superconducting transition.	5
	What are the sources of polarization in a dielectric? Explain.	3
4.	What do you mean by static dielectric constant and polarizability?	2
	Derive Debye equations for dielectrics.	4
	Draw and explain the dependence of total polarization for a dipe	olar
	substance on the frequency of the applied electric field.	4

202.2: SEMICONDUCTOR PHYSICS Marks: 20

Answer any <u>TWO</u> questions of the following:

2x10=20

1. Find the electric neutrality condition of a semiconductor which is dopped with both acceptor and donor ions. Calculate the energy difference between the Fermi energy and conduction band in an intrinsic silicon sample at $m_{e}^{*}=1.1 \text{ m and } m_{h}^{*}=0.39 \text{ m}.$ 5+5

(P.T.O.)

- 2. Find the expression for depletion temperature of a semiconductor. Explain with necessary derivation how Fermi level changes with temperature. 5+5
- Derive the expression for barrier potential. What do you mean by diffusion length of a semiconductor? Derive the expression for total current in a diode.
 3+3+4
- Under forward bias condition in a diode, derive the expression for diffusion capacitance. In a metal semiconductor junction, derive the expression for depletion width.
