PG CBCS
M.Sc. Semester-II Examination, 2021

PHYSICS
PAPER: PHS 201
Full Marks: 40
Time: 2 Hour

## Write the answer for each unit in separate sheet

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable

## 201.1: Quantum Mechanics

Marks: 20

## Answer any TWO questions of the following:

$2 \times 10=20$

1. A $2 x 2$ matrix is defined by
$\mathrm{U}=\left(\mathrm{a}_{0}+\mathrm{i}_{\boldsymbol{\omega}} . \underline{a}\right) /\left(\mathrm{a}_{0}+\mathrm{i} \underline{\underline{\sigma} . a}\right)$
where $\mathrm{a}_{0}$ is a real number and a is a 3-dimensional with real components
i) Prove that $u$ is unitary and Unimodular.
ii) If $U$ represents a rotation in 3-dimension find the axis and angle of rotation.
2. Show that spin-orbit interaction is a consequence of the Dirac equation.
3. Consider a Spin 1 particle. Evaluate the matrix element of $S_{z}\left(S_{z}+\hbar\right)\left(S_{z}-\hbar\right)$ and $S_{x}\left(S_{x}+\hbar\right)\left(S_{x}-\hbar\right)$.
4. Set up the Dirac equation for free particle and obtain its solution.

## 201.2: METHODS OF MATHEMATICAL PHYSICS - II

Marks: 20

## Answer any TWO questions of the following:

1. The displacement of a damped harmonic oscillator as a function of time is given by

$$
\begin{aligned}
& f(t)=0 \text { for } t<0 \\
& e^{-t / \tau} \sin \omega_{0} t \text { for } t>0
\end{aligned}
$$

Were $\omega_{0}$ and $\tau$ are positive real constants.
Find out the fourier transform of the function.

## (2)

2. Find out the Green's function $G(x, a)$. Corresponding to non- homogeneous differential equation

$$
\frac{d^{2} y}{d x^{2}}-y=f(x)
$$

Subjected to the Boundary condition

$$
y( \pm \alpha)=0
$$

3. The symmetry elements of a square ABCD form a group $\mathrm{G}=\left\{\mathrm{C}_{4}{ }^{1}, \mathrm{C}_{4}{ }^{2}, \mathrm{C}_{4}{ }^{3}, \mathrm{C}_{4}{ }^{4}\right.$, $\left.\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{AC}}, \sigma_{\mathrm{BD}}\right\}$

Under multiplication, where $\mathrm{C}_{4}{ }^{1}, \mathrm{C}_{4}{ }^{2}, \mathrm{C}_{4}{ }^{3}, \mathrm{C}_{4}{ }^{4}$ are the rotational symmetry elements and $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{AC}}, \sigma_{\mathrm{BD}}$ are reflection symmetry elements.

Find out the equivalents operation of the following
(a) $\mathrm{C}_{4}{ }^{2} \sigma_{\mathrm{x}}$,
(b) $\mathrm{C}_{4}{ }^{3} \mathrm{\sigma}_{\mathrm{y}}$, (c) $\mathrm{C}_{4}{ }^{2} \sigma_{\mathrm{AC}}$,
(d) $\sigma_{A C} \sigma_{B D}$
4. Discuss the steps for finding Reducible and Irreducible representation for a given molecular point group.

