PG CBCS M.SC. Semester-I Examination, 2021 DEPARTMENT OF PHYSICS PAPER: PHS 101 (MATHEMATICAL PHYSICS & CLASSICAL MECHANICS)

Full Marks: 40

Write the answer for each unit in separate sheet PHS 101.1 MATHEMATICAL PHYSICS

Answer any <u>TWO</u> questions of the following:

- 1. a) Discuss the difference between removable and non- removable singularity with examples.
 - b) Evaluate the value of the contour integral $\frac{1}{2\pi i} \oint_C \frac{e^{4z} 1}{\cosh z 2\sinh z} dz$ around the unit circle C traversed in the anti-clockwise direction. (3+7)
- 2. a) The characteristic equation of a 3 x 3 matrix is $A^3 5A^2 4A 12I = 0$. Find out Det (A^T).
 - b) Consider the following matrix

$$A = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$$

Find out the eigenvalues of the matrix $B = A^4 - 3A^3 + 3A^2 - 2A + 8I$ (4+6)

- 3. a) Prove that the set of vectors $\{(4,1,-5), (2,-3,1), (1,1,1)\}$ is an orthogonal set of vectors in \mathbb{R}^3 with standard inner product. Is it a basis of \mathbb{R}^3 . Give reasons.
 - b) Find the matrix representation of linear transformation T on $V_3(R)$ defined as

$$T(a,b,c) = (2b+c, a-4b, 3a)$$
 (6+4)

- 4. a) Prove that, $\frac{d}{dx} [erf(\sqrt{x})] = \frac{e^{-x}}{\sqrt{\pi x}}$ b) Find out the value of the integral $\int_{0}^{\infty} \frac{\ln x}{(1+x^{2})^{2}} dx$ (3+7)
- 5. a) Convert ordinary polynomial $16x^4 + 4x^3 8x^2 + 20x + 8$ into Hermite Polynomial
 - b) If $J_{n+1}(x) = \frac{2}{x}J_n(x) J_0(x)$, find the value of n
 - c) The generating function $F(x,t) = \sum_{n=0}^{\infty} P_n(x)t^n$ for the Legendre Polynomial $P_n(x)$
 - is $F(x,t) = (1-2xt+t^2)^{-1/2}$. Find the value of P₃(-1) d) Show that $L_4^2(x) = 144 - 96x + 12x^2$ (3+2+3+2)

Time: 2 Hours

2X10=20

(P.T.O.)

PHS 101.2 CLASSICAL MECHANICS

Answer any <u>TWO</u> questions of the following:

2X10=2

* Symbols have their usual meanings.

- 1. Explain Hamilton's principle. Find $[\dot{p}, H]$ and $[\dot{q}, H]$ and find the values of p and q for the Hamiltonian H= $(p^2+q^2)/2$, Also show that the energy is constant. What do you mean by stable, unstable and natural equilibrium? (3+5+2)
- 2. Prove that Possion's bracket remain invariant under canonical transformation. A particular mechanical system depending on two coordinates x and y has kinetic energy $T = \dot{x}^2 y^2 + \dot{2} y^2$ and potential energy $V = x^2 y^2$, Write down the Lagrangian for the system and deduce its equation of motion with its solution. (4+6)
- 3. What kind of transformation is generated by the function $F = -\sum_i Q_i P_i$? Explain Exchange transformation and Identity transformation. For a dynamical system having q_i and p_i respectively the generalised coordinates and momenta and Hamiltonian H, derive the following relations $\dot{p}_i = -\frac{dH}{dq_i}$ and $\dot{q}_i = \frac{dH}{dp_i}$; (2+3+5)
- 4. (a) For a system consisting of a single particle show that the principle of least action becomes,

 $\Delta \int \sqrt{H-V} \, ds = 0$, where ds = elementary path, H = Hamiltonian and V = Potential energy.

(b) Determine the oscillations of a system with two degrees of freedom whose Lagrangian is, $L = 0.5(\dot{x}^2 + \dot{y}^2) - 0.5 w_o^2(x^2 + y^2) + \alpha xy$

(5+5)

5. (a) A particle moves in a plane under the influence of a force, whose magnitude is

 $F = \frac{1}{r^2} \left(1 - \frac{\dot{r}^2 - 2\ddot{r}r}{e^2}\right)$, where r is distance of the particle to the centre of force. Find the potential that will result in such a force, and from that the Lagrangian for the motion in a plane.

(b) Find out the Lagrangian of a particle of charge q, mass m and linear momentum p, enters an electromagnetic field of vector potential V and scalar potential A and obtain the Hamiltonian of the particle. (5+5)
