PG CBCS
 M.SC. Semester-I Examination, 2021
 DEPARTMENT OF PHYSICS
 PAPER: PHS 101
 (MATHEMATICAL PHYSICS \& CLASSICAL MECHANICS)

Full Marks: 40
Time: 2 Hours

Write the answer for each unit in separate sheet

PHS 101.1 MATHEMATICAL PHYSICS

Answer any TWO questions of the following:

1. a) Discuss the difference between removable and non- removable singularity with examples.
b) Evaluate the value of the contour integral $\frac{1}{2 \pi i} \oint_{C} \frac{e^{4 z}-1}{\cosh z-2 \sinh z} d z$ around the unit circle C traversed in the anti-clockwise direction.
2. a) The characteristic equation of a 3×3 matrix is $A^{3}-5 A^{2}-4 A-12 I=0$. Find out Det $\left(\mathrm{A}^{\mathrm{T}}\right.$).
b) Consider the following matrix

$$
\mathrm{A}=\left|\begin{array}{cc}
1 & -1 \tag{4+6}\\
2 & 3
\end{array}\right|
$$

Find out the eigenvalues of the matrix $B=A^{4}-3 A^{3}+3 A^{2}-2 A+8 I$
3. a) Prove that the set of vectors $\{(4,1,-5),(2,-3,1),(1,1,1)\}$ is an orthogonal set of vectors in R^{3} with standard inner product. Is it a basis of R^{3}. Give reasons.
b) Find the matrix representation of linear transformation T on $V_{3}(R)$ defined as

$$
\begin{equation*}
T(a, b, c)=(2 b+c, a-4 b, 3 a) \tag{6+4}
\end{equation*}
$$

4. a) Prove that, $\frac{d}{d x}[\operatorname{erf}(\sqrt{x})]=\frac{e^{-x}}{\sqrt{\pi x}}$
b) Find out the value of the integral $\int_{0}^{\infty} \frac{\ln x}{\left(1+x^{2}\right)^{2}} d x$
5. a) Convert ordinary polynomial $16 x^{4}+4 x^{3}-8 x^{2}+20 x+8$ into Hermite Polynomial
b) If $J_{n+1}(x)=\frac{2}{x} J_{n}(x)-J_{0}(x)$, find the value of n
c) The generating function $F(x, t)=\sum_{n=0}^{\infty} P_{n}(x) t^{n}$ for the Legendre Polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ is $F(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2}$. Find the value of $\mathrm{P}_{3}(-1)$
d) Show that $L_{4}^{2}(x)=144-96 x+12 x^{2}$

PHS 101.2 CLASSICAL MECHANICS

Answer any TWO questions of the following:

$2 \times 10=2$

* Symbols have their usual meanings.

1. Explain Hamilton's principle. Find $[\dot{p}, \mathrm{H}]$ and $[\dot{q}, \mathrm{H}]$ and find the values of p and q for the Hamiltonian $\mathrm{H}=\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) / 2$, Also show that the energy is constant. What do you mean by stable, unstable and natural equilibrium?
2. Prove that Possion's bracket remain invariant under canonical transformation. A particular mechanical system depending on two coordinates x and y has kinetic energy $\mathrm{T}=\dot{x}^{2} y^{2}+2 y^{2}$ and potential energy $\mathrm{V}=x^{2}-y^{2}$, Write down the Lagrangian for the system and deduce its equation of motion with its solution.
3. What kind of transformation is generated by the function $\mathrm{F}=-\sum_{i} Q_{i} P_{i}$? Explain Exchange transformation and Identity transformation. For a dynamical system having q_{i} and p_{i} respectively the generalised coordinates and momenta and Hamiltonian H , derive the following relations $\dot{p}_{\imath}=-\frac{d H}{d q_{i}}$ and $\dot{q}_{l}=\frac{d H}{d p_{i}}$;
4. (a) For a system consisting of a single particle show that the principle of least action becomes,
$\Delta \int \sqrt{H-V} d s=0$, where $d s=$ elementary path, $\mathrm{H}=$ Hamiltonian and $\mathrm{V}=$ Potential energy.
(b) Determine the oscillations of a system with two degrees of freedom whose Lagrangian is, $\mathrm{L}=0.5\left(\dot{x}^{2}+\dot{y}^{2}\right)-0.5 w_{o}^{2}\left(x^{2}+y^{2}\right)+\alpha \mathrm{xy}$
5. (a) A particle moves in a plane under the influence of a force, whose magnitude is $\mathrm{F}=\frac{1}{r^{2}}\left(1-\frac{\dot{r}^{2}-2 \ddot{r} r}{e^{2}}\right)$, where r is distance of the particle to the centre of force. Find the potential that will result in such a force, and from that the Lagrangian for the motion in a plane.
(b) Find out the Lagrangian of a particle of charge q, mass m and linear momentum p , enters an electromagnetic field of vector potential V and scalar potential A and obtain the Hamiltonian of the particle.
