PG CBCS
 M.SC. Semester-IV Examination, 2021
 (Mathematics)
 PAPER: MTM-405B
 (OPERATIONAL RESEARCH MODELLING - II)

Time: 1 Hour

Answer any TWO questions from the following:

$2 \times 10=20$

1. (a). What do you mean by the term 'reliability' of an item? Derive the general formula to computing reliability of an item.
(b).Three generators, one with a capacity of 100 kw and the other two with a capacity of 50 kw each are connected in parallel. Draw the reliability logic diagram if the required load is: (i) 100 kw (ii) 150 kw .Determine the reliability of both the arrangements if the reliability of each generator is 0.95 . (2+4)+4
2. (a). The two finite probability schemes are given by $\left(p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right)$ and $\left(q_{1}, q_{2}, q_{3}, \ldots, q_{n}\right)$, with $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}$, then show that $-\sum_{i=1}^{n} p_{i} \log p_{i} \leq$ $-\sum_{i=1}^{n} q_{i} \log q_{i}$ with inequality holds if and only if $p_{i}=q_{i}$ for all i.
(b). Find the curve along which arc length joining points $(1,1)$ and $(4,5)$ is extremum.
3. (a). State Pontrygin's maximum principle in connection with optimal control problem.
(b). Find the extremal of the functional $\int_{0}^{\frac{\pi}{2}}\left(y^{\prime 2}-y^{2}+2 x y\right) d x$ that satisfy the boundary conditions $y(0)=0, y\left(\frac{\pi}{2}\right)=0$.
4. (a).Define entropy function.
(b). Establish the following results for two-dimensional discrete probability distribution
(i) $H(X, Y)=H(X)+H(Y)$ if and only if X and Y are independent.
(ii) $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$.
(iii) $H(X) \geq H(X \mid Y) ; \quad H(Y) \geq H(Y \mid X)$.
