PG CBCS

M.SC. Semester-IV Examination, 2021
(MATHEMATICS)
PAPER: MTM- 404B
(NONLINEAR OPTIMIZATION)

Full Marks: 40

Time: 2 Hours

Answer any FOUR questions from the following:
 $4 \times 10=40$

1. (a) State and prove the Fritz- John stationary point necessary optimality theorem.
(b) Solve the following problem by Beale's method

$$
\begin{array}{cl}
\operatorname{Maximixe} z= & 2 x_{1}+3 x_{2}-x_{1}^{2}-x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

2. (a) Let θ be a numerical differentiable function on an open convex set $\Gamma \subset R^{n} . \theta$ is convex if and only if $\theta\left(x^{2}\right)-$ $\theta\left(x^{1}\right) \leqq \nabla \theta\left(x^{1}\right)\left(x^{2}-x^{1}\right)$ for each $x^{1}, x^{2} \in \Gamma$.
(b) Define the following terms:
(i) The (primal) quadratic minimization problem (QMP).
(ii) The quadratic dual (maximization) problem (QDP).

5+5
3. (a) How do you solve the following geometric programming problem?

Find $\quad X=\left\{\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right\}$ that minimizes the objective function

$$
f(x)=\sum_{j=1}^{n} U_{j}(x)=\sum_{j=1}^{N}\left(c_{j} \prod_{i=1}^{n} x_{i}^{a_{i j}}\right)
$$

$c_{j}>0, x_{i}>0, a_{i j}$ are real numbers, $\forall i, j$.
(b) Derive the Kuhn-Tucker conditions for the quadratic programming problem.
4. (a) Define multi-objective non-linear programming problem. Define the following in terms of multi-objective non-linear programming problem:
(i) Pareto optimal solution
(ii) Weak Pareto optimal solution
(b) Give the geometrical interpretations of differentiable convex function and concave function.

5+5
[P. T. O]
5. (a) State and prove Fritz-John saddle point sufficient optimality theorem. What are the basic differences between the necessary criteria and sufficient criteria of FJSP.
(b) Define the following:
(i) Minimization problem
(ii) Local minimization problem.
6. (a) Solve by using Wolfe's method the following quadratic programming problem

$$
\begin{gathered}
\operatorname{Max} z=2 x_{1}+3 x_{2}-2 x_{1}^{2} \\
\text { Sub.to } x_{1}+4 x_{2} \leq 4 \\
x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(b) State and prove weak duality theorem in connection with duality in non-linear programming.

$$
7+3
$$

7. (a) What is the degree of difficulty in connection with Geometric programming.
(b) Define Nash strategy and Nash equilibrium outcome.
(c) What is stochastic programming problem?
(d) State Kuhn-Tucker stationary optimality theorem.
(e) State Karlin's constraint qualification.
8. (a) Find the Nash equilibrium solution(s) of the following matrix game(if exists)

$$
\left[\begin{array}{cc}
(-2,-1) & (1,1) \\
(-1,2) & (-1,-2)
\end{array}\right]
$$

(b) Discuss chance constrained programming technique when only c_{j} are random variable.

4+6

