PG CBCS

M.SC. Semester-IV Examination, 2021
(MATHEMATICS)
PAPER: MTM-402
(FUZZY MATHEMATICS WITH APPLICATIONS \& SOFT COMPUTING)

Write the answers of each unit in separate sheets UNIT- 402.1
 (FUZZY MATHEMATICS WITH APPLICATIONS)

Answer any TWO questions from the following: $\mathbf{2 \times 1 0 = 2 0}$

1. (a)Using subtraction rule of fuzzy number to prove that $9-5=4$.
(b)Define α - cut of the fuzzy number.
(c)State resolution principle for fuzzy set. $5+2+3$
2. (a)Discuss fuzzy sets concept with proper example.
(b)Prove that $\left[a_{1}, b_{1}, c_{1}, d_{1}\right]+\left[a_{2}, b_{2}, c_{2}, d_{2}\right]=\left[a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+\right.$ $c_{2}, d_{1}+d_{2}$], where $[a, b, c, d]$ is a trapezoidal fuzzy number.
$3+7$
3. (a) Is every fuzzy set is a fuzzy number? Discuss properly.
(b) In the context of fuzzy sets prove that $[a, b]-[a, b] \neq[0,0]$.
(c) Simplify the following fuzzy expressions:
I. $8[-4,0,1,3]-5[-3,1,7]+3[-10,5]-11$
II. $[-1,1,7]-4[-1,5]+17$ $3+3+4$
4. (a)In the context of fuzzy arithmetic prove that $[3,5]+[4,6]=[7,11]$.
(b)Define symmetric fuzzy linear programming problem.
(c)Define convex fuzzy set. $5+3+2$

UNIT- 402.2

(SOFT COMPUTING)
Answer any TWO questions from the following:
$2 \times 10=20$
5. (a)Write down the features of soft computing.
(b)Maximize $f(x)=4+10 x-x^{2}, 1 \leq x \leq 9$ using binary coded GA. Given that population size $N=5$, initial population $x_{1}=10111, x_{2}=10101, x_{3}=11100, x_{4}=11101, x_{5}=$ 10100. Random numbers for selection: $0.19,0.63,0.97,0.11,0.70$.

Cross-over probability, $P_{c}=0.8$ and random numbers for crossover: $0.60,0.85,0.57,0.37,0.70$.

Mutation probability, $P_{m}=0.04$ and random numbers for mutation $0.21,0.37,0.02,0.52,0.07,0.97,0.14,0.61,0.17,0.09,0.03,0.82$, $0.08,0.21,0.37,0.20,0.25,0.72,0.24,0.16,0.47,0.58,0.49,0.01$,
0.18. (One iteration only)
6. (a) Write a short note on Fuzzy logic.
(b) Perform the selection procedure of the following Binary Coded GA:

Maximize $f(x)=\sqrt{x}, \quad 0 \leq x \leq 25$.
Given that population size, $\mathrm{N}=5$; Initial population, 11001, 01111, $01011,10001,11001$; random numbers for selection, $0.67,0.11$, $0.83,0.31,0.54$.
(c) Write a short note on Hard computing. $3+5+2$
7. (a)Mention the ranges of different GA parameters.
(b)Using the perceptron learning rule, find the weights required to find the following classification:
$\{[(1,1,1), 0],[(-1,1,1), 0],[(-1,-1,1), 1],[(-1,-1,-1), 1]\}$.

$$
2+8
$$

8. (a)Write down the drawbacks of traditional optimization techniques.
(b)Write a short note on penalty function method.
(c) Draw the working cycle of GA.
$4+3+3$
