PG CBCS
 M.SC. Semester-III Examination, 2021
 DEPARTMENT OF MATHEMATICS

PAPER: MTM-301

(PARTIAL DIFFERENTIAL EQUATIONS AND GENERALIZED FUNCTIONS)

Full Marks: 50
Time: 2 Hours

Answer any FOUR questions from the following:

1. a) Solve the following: $\left(D^{2}+5 D D^{\prime}+{D^{\prime}}^{2}\right) z=0$ where $D \equiv \frac{\partial}{\partial x}$ and $D^{\prime} \equiv \frac{\partial}{\partial y}$
b) Find the derivative of the Heaviside unit step function.
c) Find the solution of $z^{2}=p q x y$.
$4+3+3$
2. a) Show that the following equation is hyperbolic:

$$
U_{x x}+6 U_{x y}-16 U_{y y}=0 .
$$

b) Find the canonical form of the equation.
c) Find the general solution $U(x, y)$.
d) Find a solution $U(x, y)$ that satisfies $U(-x, 2 x)=x$ and $U(x, 0)=\sin 2 x$.

$$
1+4+2+3
$$

3. a) Show that the Green's function for the Laplace equation is symmetric.
b) Establish the Poisson's formula for the solution of a Dirichlet problem for the Laplace equation in a disk of radius a.

$$
4+6
$$

4. a) Let $L u=a(x) \frac{\partial^{2} u}{\partial x^{2}}+b(x) \frac{\partial u}{\partial x}+c(x) u$. Find the adjoint operator of L.
b) Prove that a Laplace operator is a self-adjoint operator.
$6+4$
5. a) Prove that $\delta(a t)=\frac{1}{a} \delta(t)$. Symbols have their usual meaning.
b) Solve the following problem:

$$
\begin{aligned}
& u_{t}=u_{x x}-u, 0<x<1, t>0 \\
& u(0, t)=u_{x}(1, t)=0, t \geq 0 \\
& u(x, 0)=x(2-x), 0 \leq x \leq 1 .
\end{aligned}
$$

[P. T. O]
6. a) Find the general solution of the following PDE:
$\left(D-2 D^{\prime}+5\right)\left(D^{2}+D^{\prime}+3\right) z=\sin (2 x+3 y)$. where $D \equiv \frac{\partial}{\partial x}$ and $D^{\prime} \equiv \frac{\partial}{\partial y}$
b) Solve, $p^{2}+q^{2}=n_{0}{ }^{2}$ where n_{0} is constant with initial condition $\Gamma: U(x, 2 x)=1$. 5+5
7. Obtain the solution of the interior Dirichlet problem for the Poisson's equation in a sphere using the Green's function method. Hence derive the Poisson integral formula. $6+4$
8. a) If $\beta_{r} D^{\prime}+\gamma_{r},\left(\beta_{r}>0\right)$ be a factor of $F\left(D^{\prime}, D\right)$ and $\varphi_{r}(\zeta)$ is an arbitrary function of the variable ζ, then prove that a solution of the equation $F\left(D^{\prime}, D\right) z=0$ is given by $U_{r}=e^{-\frac{\gamma_{r}, y}{\beta_{r}}} \varphi_{r}\left(\beta_{r} x\right)$, where β_{r}, γ_{r} are constants and $D \equiv \frac{\partial}{\partial x}, D^{\prime} \equiv \frac{\partial}{\partial y}$.
b) Solve, $\left(\mathrm{D}+\mathrm{D}^{\prime}\right)^{2} z=x^{2}+x y+y^{2}$. $5+5$

