PG CBCS

M.SC. Semester-II Examination, 2021
(MATHEMATICS)
PAPER: MTM-203
(ABSTRACT ALGEBRA AND LINEAR ALGEBRA)
Full Marks: 40
Time: 2 Hours

## Write the answers of each unit in separate sheet <br> UNIT-203.1 <br> (ABSTRACT ALGEBRA)

Answer any Two questions from the following:
$2 \times 10=20$

1. (a) (i) With proper justification, give an example of an infinite noncommutative solvable group.
(ii) Find the class equation of the group $S_{4}$.
(b)Find the prime ideals and the maximal ideals in the ring $\left(Z_{8},+,.\right)$.

$$
(2+3)+5
$$

2. (a) Show that any epimorphism from the group $(Z,+)$ onto itself is an isomorphism.
Is it true that any group of order 175 has a normal subgroup of order 25?
(b) Show that in the ring $(\mathbb{Z} \times \mathbb{Z},+,$.$) , the set I=\{(x, 0): x \in \mathbb{Z}\}$ is a prime ideal but not a maximal ideal.
3. (a)Classify all groups of order 49 up to isomorphism.
(b) Prove that every finite integral domain is a field.
4. (a) Define algebraic numbers for a field extension, and prove that sum of two algebraic numbers is also algebraic.
(b) Is there exists an infinite group G, such that each element of G is of finite order?
$7+3$

## UNIT-203.2

(LINEAR ALGEBRA)
Answer any Two questions from the following:
$2 \times 10=20$
5. (a)What is the quotient space in linear algebra?
(b) What is the linear functional on a vector space with examples.
(c) Let T be linear operator on finite dimensional vector space V . When u say that T is diagonalizable?
(d) Define Jordan block with example.
(e) Define characteristic value and vector of a linear operator on a vector space.
6. (a)Find all possible Jordan canonical forms for a linear operator T : V to V (vector space) whose characteristicpolynomial is $(t-2)^{3}(t-5)^{5}$. In each case, find the minimal polynomial $\mathrm{m}(\mathrm{t})$.
(b) State and prove first Isomorphism theorem on linear algebra.
(c) Let $T: M_{2 \times 3}(F) \rightarrow M_{2 \times 2}(F)$ be defined by

$$
T\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{cc}
2 a_{11}-a_{12} & a_{13}+2 a_{12} \\
0 & 0
\end{array}\right)
$$

Find Null space of $T$ and Range space of $T$. Determine whether $T$ is one-to-one or onto.
$3+4+3$
7. (a) Suppose V has finite dimension and $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{U}$. Suppose $F: V \rightarrow$ $V$ is linear. Then $F$ is an isomorphism iff F is non-singular.
(b) Let A be a real square matrix. Is A similar to a Jordan matrix? If not, give a counter example.
C. Describe all canonical nilpotent matrices of order 3. $5+3+2$
8. (a) Extend $\{(2,3,-1),(1,-2,-4)\}$ to an orthogonal basis of the Euclidean space $\mathbb{R}^{3}$ with standard inner product and then find the associated orthogonal basis.
(b) Consider the basis $\left\{v_{1}=(2,1), v_{2}=(3,1)\right\}$ of $\mathbb{R}^{2}$. Find the dual basis $\left\{\varphi_{1}, \varphi_{2}\right\}$.
$(3+2)+5$

