PG CBCS

M.SC.Semester-II Examination, 2021
(Mathematics)
PAPER: MTM-202
(NUMERICAL ANALYSIS)
Full Marks: 40
Time: 2 Hours

Answer any FOUR questions from the following:

1. (a) Find whether the following function is spline or not?

$$
f(x)=\left\{\begin{array}{cl}
-x^{2}-2 x^{3}, & x \in[-1,0] \\
-x^{2}+2 x^{3}, & x \in[0,1]
\end{array}\right.
$$

(b) Develop the cubic spline of the following information

$\mathrm{x}:$	1	2	3	4
$\mathrm{f}(\mathrm{x}):$	1	5	11	8

where $y^{\prime \prime}(1)=0=y^{\prime \prime}(4)$. Hence compute $y(1.5)$. $3+7$
2. (a) Discuss the Newton-Raphson method for a pair of non-linear equations with stated convergence conditions.
(b) Approximate the function $\sin x,-1 \leq x \leq 1$ using Chebyshev polynomials. 5+5
3. (a) Use fourth order Runge-Kutta method to solve the second order initial value problem $2 y^{\prime \prime}(x)-6 y^{\prime}(x)+2 y(x)=4 e^{x}$ with $y(0)=1$ and $y^{\prime}(0)=$ 1 at $x=0.2,0.4$.
(b) Discuss Milne's predictor-corrector formula to find the solution of $y^{\prime}=$ $f(x y), y\left(x_{0}\right)=y_{0}$.
4. (a) Use Jacobi's method to determine all eigenvalues and the eigenvectors of the real symmetric matrix $A=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3\end{array}\right)$.
(b) Analyze the stability of Runge-Kutta method for initial value ODE.
5. (a) Derive the Gauss-Chebyshev quadrature formula. Using six points GaussChebyshev quadrature formula evaluate $\int_{0}^{2} \frac{x}{1+x^{3}} d x$.
(b) Explain Monte Carlo method to integrate $\int_{a}^{b} f(x) d x$. 6+4
6. (a) Explain the ill-conditioned and well- conditioned system. The coefficient matrices of two system of equations are $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right) \operatorname{andB}=\left(\begin{array}{cc}1 & 1 \\ 1 & 1.0001\end{array}\right)$. Find the condition numbers of two systems and indicate which system is stable.
(b) Derive the Gauss-Legendre quadrature formula to integrate $\int_{-1}^{1} \psi(x) f(x) d x . \quad 5+5$
7. (a) Solve the system of equations

$$
\begin{gathered}
2 x+4 y-2 z=14 \\
x+3 y-4 z=16 \\
-x+2 y+3 z=1
\end{gathered}
$$

using LU-decomposition method.
(b) Express the polynomial $x^{4}+2 x^{3}-x^{2}+5 x-9$ in terms of Chebyshev polynomials. $8+2$
8. (a) Describe an implicit method to solve a parabolic PDE.
(b) Solve the boundary value problem $y^{\prime \prime}+x y^{\prime}+4=0, y(0)=0$ and $y(1)=$ 0 with step length $h=0.25$. $5+5$

