PG CBCS
M.SC. Semester-I Examination, 2021

MATHEMATICS
PAPER: MTM-103
(ORDINARY DIFFERENTIAL EQUATIONS AND SPECIAL FUNCTIONS)
Full Marks: 50
Time: 2 Hours

Answer any FOUR questions from the following:

$10 \times 4=40$

1. a) Find the general solution of the homogeneous equation $\frac{d \vec{x}}{d t}=$ $\left(\begin{array}{ccc}1 & -2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 2\end{array}\right) \vec{x}$ where $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
b) Prove that $\frac{d}{d z}\left[z^{-n} J_{n}(z)\right]=-z^{-n} J_{n+1}(z)$, where $J_{n}(z)$ is the Bessel's function.

6+4
2. a) Find the power series solution near the origin of the confluent hypergeometric equation.
b) Prove that $(\alpha-\beta) F(\alpha, \beta, \gamma, z)=\alpha F(\alpha+1, \beta, \gamma, z)-\beta F(\alpha, \beta+1, \gamma, z)$ where $F(\alpha, \beta, \gamma, z)$ is the hypergeometric function. $7+3$
3. a) Find the series solution near $\mathrm{z}=0$ of $\left(z+z^{2}+z^{3}\right) w^{\prime \prime}(z)+3 z^{2} w^{\prime}(z)-$ $2 w(z)=0$.
b) Deduce the Rodrigue's formula for Legendre's polynomial. 6+4
4. a) Using Green's function, solve the boundary value problem $y^{\prime \prime}+\pi^{2} y=$ $\cos \pi x, y(0)=y(1), y^{\prime}(0)=y^{\prime}(1)$.
b) Define fundamental matrix.
5. a) If α and β are the roots of the equation $J_{n}(z)=0$ then show that $\int_{0}^{1} J_{n}(\alpha z) J_{n}(\beta z) d z=\left\{\begin{array}{ll}0, & \text { if } \alpha \neq \beta \\ \frac{1}{2}\left[J_{n}^{\prime}(\beta)\right]^{2}, & \text { if } \alpha=\beta\end{array}\right.$.
b) Prove that $\int_{-1}^{1} P_{m}(z) P_{n}(z) d z=\frac{2}{2 n+1} \delta_{m n}$, where $\delta_{m n}, P_{n}(z)$ are the Kronecker delta and Legendre's polynomial respectively.
6. a) If $f(z)$ is continuous and has continuous derivative on $[-1,1]$ then prove that $f(z)$ has unique Legendre series expansion given by $f(z)=$ $\sum_{n=0}^{\infty} c_{n} p_{n}(z)$ where $p_{n}(z)$ is the Legendre's polynomial and $c_{n}=$ $\frac{2 n+1}{2} \int_{-1}^{1} f(z) p_{n}(z) d z, n=0,1,2, \ldots$
b) Deduce confluent hypergeometric differential equation from hypergeometric differential equation.
c) Find the singularities of the confluent hypergeometric equation. $6+2+2$
7. a) Find the characteristics values and characteristic functions of StrumLiouville problem $\left(x^{3} y^{\prime}\right)^{\prime}+\lambda x y=0 ; y(0)=0, y(e)=0$.
b) Consider the boundary value problem $\frac{d^{2} y}{d x^{2}}+\lambda y=0 ; 0 \leq x \leq \pi, y(0)=$ $0, y(\pi)=0$. Find the values of λ for which the boundary value problem is solvable.
$7+3$
8. a) If the solution $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ of the linear homogeneous vector differential equation $\frac{d x}{d t}=A(t) X(t)$ be a fundamental solution of above and $\varphi(t)$ be a arbitrary solution of above. Then prove that $\varphi(t)$ can be expressed as alinear combination of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ on [a, b].
b) Prove that $F(\alpha, \beta, \gamma, z)=(1-z)^{-\alpha} F\left(\alpha, \gamma-\beta, \gamma, \frac{z}{z-1}\right)$.

