M.SC. Semester-I Examination, 2021

MATHEMATICS
PAPER: MTM 102
(COMPLEX ANALYSIS)
Full Marks: 50
Time: 2 Hours

Answer any FOUR questions of the following:

$10 \mathrm{X} 4=40$

1. a) State and prove Rouche's theorem.
b) (i) State Cauchy Integral formula.
(ii) Using Cauchy Integral formula evaluate $\int_{C} \frac{z d z}{z^{2}-1}$, where $C:|z|=2$.
2. a) Using the calculus of residues evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{3}}$.
b) Let a function is defined by $f(z)=\left\{\begin{array}{c}\frac{(\bar{z})^{2}}{z}, z \neq 0 \\ 0, z=0\end{array}\right.$. Show that the C-R equations are satisfied at $(0,0)$ although $f(z)$ is not differentiable at $(0,0)$.
3. a) Find the bilinear transformation that maps the upper half plane $\operatorname{Im}(z)>0$ onto the open disc $|w|<1$ and the boundary $\operatorname{Im}(z)=0$ onto the boundary $|w|=1$.
b) Find the Mobious transformation that maps $1,0,-1$ to the respective points $i, \infty, 1$
$4+6$
4. a) Evaluate $\int_{C} \frac{\cosh (z)}{z\left(1+z^{2}\right)} d z$ where C is the circle $|z|=2$, described in the positive sense.
b) Using the single residue of $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$ at $\mathrm{z}=0$, evaluate the integral of $\frac{z^{5}}{1-z^{3}}$ around the circle $|z|=2$ in the positive sense.
c) Find the value of $\int_{C} \log (z+4) d z$ when the contour C is ellipse $9 x^{2}+4 y^{2}=36$, in either direction.
$4+3+3$
5. a) Define analytic function in a domain.
b) Show that a real valued function of a complex variable either has derivative zero or the derivative does not exist.
c) Show that the function $f(z)=|z|$ is not differentiable at $z=0$.
(d) Is the function $u=2 x y+3 x y^{2}-2 y^{3}$ harmonic? Justify your answer. $2+3+3+2$
6. a) State Uniqueness theorem for power series.
b) Using the method of residue, evaluate: $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$.
c) Evaluate $\int_{\gamma} x d z$, where γ is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
d) Define winding number of a curve.
$2+3+3+2$
7. a) Examine whether the following statement is true or false with proper justification: $\sin (z)$ is bounded in complex plane.
b) Prove that every zero of an analytic function $f(\not \equiv 0)$.
c) Suppose that D is a domain and $f \in \mathcal{H}(D)$ vanishes throughout any neighborhood of a point in D. Show that $f(z) \equiv 0$ in D. $3+4+3$
8. Examine whether the following statements are true or false with proper justification:
(i) An entire function $f(z)$ having $z=\infty$ as a removal singularity is constant.
(ii) The function $f(z)=\frac{z^{4}+1}{\left(\alpha z-|z|^{2}\right)\left(\beta z-|z|^{2}\right)}, \alpha, \beta \in \mathbb{C} \backslash\{0\}(\alpha \neq \beta)$ has two simple poles at $z=\bar{\alpha}, \bar{\beta}$ and a double pole at $z=0$.
(iii) There exists an analytic function in the unit disk Δ such that

$$
f\left(\frac{1}{2 n}\right)=f\left(\frac{1}{2 n+1}\right)=\frac{1}{n} \text { for } n \geq 2 .
$$

(iv) The zeros of $\sin \left(\frac{1}{z}\right)$ are $z=\frac{1}{n \pi}(n \in \mathbb{Z})$ and each zero is isolated.

$$
2+3+3+2
$$

[Internal Assessment: 10 Marks]

