Total pages: 2

PG CBCS M.SC. Semester-I Examination, 2021 MATHEMATICS PAPER: MTM 102 (COMPLEX ANALYSIS)

Full Marks: 50

Time: 2 Hours

10X4 = 40

6+4

Answer any <u>FOUR</u> questions of the following:

- 1. a) State and prove Rouche's theorem.
 - b) (i) State Cauchy Integral formula.
 - (ii) Using Cauchy Integral formula evaluate $\int_C \frac{z \, dz}{z^2 1}$, where C: |z| = 2. (2+3)+(2+3)
- 2. a) Using the calculus of residues evaluate $\int_{0}^{\infty} \frac{dx}{(x^{2}+4)^{3}}$.

b) Let a function is defined by $f(z) = \begin{cases} \frac{(\bar{z})^2}{z}, z \neq 0\\ 0, z = 0 \end{cases}$. Show that the C-R equations are satisfied at (0,0) although f(z) is not differentiable at (0,0).

3. a) Find the bilinear transformation that maps the upper half plane Im(z)>0 onto the open disc |w|<1 and the boundary Im(z)=0 onto the boundary |w|=1.

b) Find the Mobious transformation that maps 1, 0 , -1 to the respective points *i*, ∞ , 1 4+6

4. a) Evaluate $\int_C \frac{\cosh(z)}{z(1+z^2)} dz$ where C is the circle |z| = 2, described in the positive sense.

b) Using the single residue of $\frac{1}{z^2} f(\frac{1}{z})$ at z=0, evaluate the integral of $\frac{z^5}{1-z^3}$ around the circle |z|=2 in the positive sense.

c) Find the value of $\int_C Log(z+4)dz$ when the contour C is ellipse $9x^2 + 4y^2 = 36$, in either direction. 4+3+3

5. a) Define analytic function in a domain.b) Show that a real valued function of a complex variable either has derivative zero or the derivative does not exist.

[P. T. O]

2+3+3+2

c) Show that the function f(z) = |z| is not differentiable at z = 0.

(d) Is the function $u = 2xy + 3xy^2 - 2y^3$ harmonic? Justify your answer. 2+3+3+2

6. a) State Uniqueness theorem for power series.

b) Using the method of residue, evaluate: $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+a^2)(x^2+b^2)}.$

- c) Evaluate $\int_{\gamma} x \, dz$, where γ is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- d) Define winding number of a curve.
- 7. a) Examine whether the following statement is true or false with proper justification: sin(z) is bounded in complex plane.
 - b) Prove that every zero of an analytic function $f \neq 0$.

c) Suppose that *D* is a domain and $f \in \mathcal{H}(D)$ vanishes throughout any neighborhood of a point in *D*. Show that $f(z) \equiv 0$ in *D*. 3 + 4 + 3

- 8. Examine whether the following statements are true or false with proper justification:
 - (i) An entire function f(z) having $z = \infty$ as a removal singularity is constant.
 - (ii) The function $f(z) = \frac{z^4+1}{(\alpha z |z|^2)(\beta z |z|^2)}$, $\alpha, \beta \in \mathbb{C} \setminus \{0\} \ (\alpha \neq \beta)$ has two simple poles at $z = \overline{\alpha}, \overline{\beta}$ and a double pole at z = 0.
 - (iii) There exists an analytic function in the unit disk Δ such that

$$f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{n}$$
 for $n \ge 2$.

(iv) The zeros of $\sin\left(\frac{1}{z}\right)$ are $z = \frac{1}{n\pi}$ ($n \in \mathbb{Z}$) and each zero is isolated. 2 + 3 + 3 + 2

[Internal Assessment: 10 Marks]