PG CBCS

M.SC. Semester-I Examination, 2021
 MATHEMATICS

PAPER: MTM 101
(REAL ANALYSIS)

Answer any FOUR questions of the following:

10X4=40

1. a) Show that the conditions
i) $d(x, y)=0$ iff $x=y(x, y \in X)$ and
ii) $d(x, y) \leq d(x, y)+d(y, z), \forall x, y, z \in X$
are not sufficient to ensure that the map $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}$ is a metric on the set X.
b) Show that the function $\mathrm{d}: \mathrm{C}[0,1] \times \mathrm{C}[0,1] \rightarrow \mathbb{R}$ defined by $\mathrm{d}(\mathrm{f}, \mathrm{g})=$ $\inf \{|f(\mathrm{t})-\mathrm{g}(\mathrm{t})|: \mathrm{t} \in[0,1]\}$ where $\mathrm{f}, \mathrm{g} \in \mathrm{C}[0,1]$ (=the set of all real valued continuous function over $[0,1]$) is not a metric on $\mathrm{C}[0,1]$.
c) i) Define an equivalent metric.
ii) Prove that two metrics d_{1} and d_{2} on a non-empty set X are equivalent if there exist real numbers $r, s>0$ such that $d_{1}(x, y) \leq \mathrm{rd}_{2}(\mathrm{x}, \mathrm{y})$ and $d_{2}(x, y) \leq s d_{1}(x, y) \forall x, y \in X$. $3+2+(2+3)$
2. a) i) Define a finite intersection property.
ii) Prove that a metric space (X, d) is compact if and only if for every collection of closed set $\left\{F_{\alpha}: \alpha \in \Lambda\right\}$ in X possessing finite intersection property, the intersection $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ of the entire collection is nonempty.
b) i) Prove that any continuous function on a compact metric space $\left(X, d_{1}\right)$ to a metric space $\left(Y, d_{2}\right)$ is uniformly continuous.
ii) Determine whether the set $S=\left\{(x, y): 0<x \leq 1, x^{2}+y^{2}=4\right\}$ is compact in \mathbb{R}^{2}.
$(2+3)+(3+2)$
3. a). Prove that (X, d) is connected iff the only subsets of X, both open and closed, are X and ϕ.
b). Show that every continuous function $f:[-1,1] \rightarrow[-1,1]$ of the closed interval $[-1,1]$ into itself has at least one fixed point, i.e., $\exists x \in[-1,1]$ such
that $f(x)=x$.
c). Examine whether the following subsets of \mathbb{R}^{2} (with usual metric) are connected.
i) $A=\left\{(x, y): x>0, x^{2}+y^{2} \leq 1\right\} \cup\left\{(x, y): x<0, x^{2}+y^{2} \leq 1\right\}$.
ii) $B=\{(x, y): x=0,0<y<1\} \cup\{(x, y): 0<x<1, y=0\}$.

$$
3+3+(2+2)
$$

4. Examine if the following statements are true or false with proper justification.

$$
2 \times 5=10
$$

i) Every Cauchy sequence is convergent in (\mathbb{R}, d), where $d(x, y)=|x-y|$ for $x, y \in \mathbb{R}$.
ii) Let X denote the set of all Riemann integrable functions on $[a, b] .(X, d)$ is a metric space where $d(f, g)=\int_{a}^{b}|f(x)-g(x)| d x$ for $f, g \in X$.
iii) A is a compact set in a metric space (X, d) and $b \in X \backslash A$. Then does not exists any point $a \in A$ such that $d(a, b)=d(A, b)$.
iv) Let A and B be two closed sets in a metric space (X, d_{1}) such that $X=$ $A \cup B$, and let $f: A \rightarrow Y$ and $g: B \rightarrow Y$, where $\left(Y, d_{2}\right)$ is a metric space, be continuous maps such that $f(x)=g(x), \forall x \in A \cap B$. Then the map $h: X \rightarrow Y$, defined by $h(x)=\left\{\begin{array}{l}f(x) \text { if } x \in A \\ g(x) \text { if } x \in B\end{array}\right.$ is continuous.
v) For any subset $A \subseteq X, \chi_{A} \in \mathbb{L}_{0}^{+}$. Where $\chi_{A}(x)=\left\{\begin{array}{l}1 \text { if } x \in A \\ 0 \text { if } x \notin A\end{array}\right.$ and \mathbb{L}_{0}^{+}is the class of all non-negative simple measurable functions on X.
5. a). Establish a necessary and sufficient condition for a function $f:[a, b] \rightarrow \mathbb{R}$ to be a function of bounded variation on $[a, b]$.
b). Show that the set of all functions of bounded variation on $[a, b]$ forms a vector space under usual addition and multiplication by scalars. $\quad 5+5$
6. a). If $f \in \mathcal{R}(\alpha)$ on $[a, b]$, then show that $\alpha \in \mathcal{R}(f)$ on $[a, b]$. Also show that $\int_{a}^{b} f d \alpha+\int_{a}^{b} \alpha d f=f(b) \alpha(b)-f(a) \alpha(a)$.
(b). Show that every finite sum of real numbers can be expressed as the R-S integral over some interval.
7. a). Suppose $f: X \rightarrow[0, \infty]$ is measurable and $\phi(E)=\int_{E} f d \mu$ for every measurable set E in X. Show that ϕ is a measure and $\int g d \phi=\int g f d \mu$ for every measurable function g on X with range in $[0, \infty]$.
b). If $f_{n}: X \rightarrow[0, \infty]$ is measurable for $n=1,2,3, \ldots$, and $f(x)=\sum_{n=1}^{\infty} f_{n}(x)$, $x \in X$, then show that $\int f d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu$. 5+5
8. (a). Let $f(x)=\frac{1}{x^{p}}$ if $0<x \leq 1$ and $f(0)=0$. Find necessary and sufficient condition on p such that $f \in L^{1}[0,1]$. Compute $\int_{0}^{1} f(x) \lambda(x)$ in that case.
(b). Evaluate the following: $\int_{-1}^{3} 2 \cos x d(2 x+[x])$.
[Internal Assessment-10 Marks]

