PG CBCS M.SC. Semester-I Examination, 2021 MATHEMATICS PAPER: MTM 101 (REAL ANALYSIS)

Full Marks: 50

Time: 2 Hours

Answer any <u>FOUR</u> questions of the following:

10X4=40

- 1. a) Show that the conditions
 - i) d(x, y) = 0 iff x = y (x, $y \in X$) and
 - ii) $d(x, y) \le d(x, y) + d(y, z), \forall x, y, z \in X$ are not sufficient to ensure that the map $d: X \times X \to \mathbb{R}$ is a metric on the set X.
 - b) Show that the function $d: C[0,1] \times C[0,1] \to \mathbb{R}$ defined by $d(f,g) = \inf\{|f(t) g(t)|: t \in [0,1]\}$ where $f, g \in C[0,1]$ (=the set of all real valued continuous function over [0,1]) is not a metric on C[0,1].
 - c) i) Define an equivalent metric.
 - ii) Prove that two metrics d_1 and d_2 on a non-empty set X are equivalent if there exist real numbers r, s > 0 such that $d_1(x, y) \le r d_2(x, y)$ and $d_2(x, y) \le s d_1(x, y) \forall x, y \in X$. 3 + 2 + (2 + 3)
- 2. a) i) Define a finite intersection property.
 - ii) Prove that a metric space (X, d) is compact if and only if for every collection of closed set $\{F_{\alpha} : \alpha \in \Lambda\}$ in X possessing finite intersection property, the intersection $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ of the entire collection is nonempty.
 - b) i) Prove that any continuous function on a compact metric space (X, d_1) to a metric space (Y, d_2) is uniformly continuous.
 - ii) Determine whether the set $S = \{(x, y): 0 < x \le 1, x^2 + y^2 = 4\}$ is compact in \mathbb{R}^2 . (2+3) + (3+2)
- 3. a). Prove that (X, d) is connected iff the only subsets of X, both open and closed, are X and ϕ .

b). Show that every continuous function $f: [-1,1] \rightarrow [-1,1]$ of the closed interval [-1,1] into itself has at least one fixed point, i.e., $\exists x \in [-1,1]$ such

 $2 \times 5 = 10$

that f(x) = x.

c). Examine whether the following subsets of \mathbb{R}^2 (with usual metric) are connected.

i)
$$A = \{(x, y): x > 0, x^2 + y^2 \le 1\} \cup \{(x, y): x < 0, x^2 + y^2 \le 1\}.$$

ii) $B = \{(x, y): x = 0, 0 < y < 1\} \cup \{(x, y): 0 < x < 1, y = 0\}.$
 $3 + 3 + (2 + 2)$

4. Examine if the following statements are true or false with proper justification.

i) Every Cauchy sequence is convergent in (\mathbb{R}, d) , where d(x, y) = |x - y| for $x, y \in \mathbb{R}$.

ii) Let X denote the set of all Riemann integrable functions on [a, b]. (X, d) is a metric space where $d(f, g) = \int_a^b |f(x) - g(x)| dx$ for $f, g \in X$.

iii) A is a compact set in a metric space (X, d) and $b \in X \setminus A$. Then does not exists any point $a \in A$ such that d(a, b) = d(A, b).

iv) Let *A* and *B* be two closed sets in a metric space (X, d_1) such that $X = A \cup B$, and let $f: A \to Y$ and $g: B \to Y$, where (Y, d_2) is a metric space, be continuous maps such that $f(x) = g(x), \forall x \in A \cap B$. Then the map $h: X \to Y$, defined by $h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$ is continuous.

v) For any subset $A \subseteq X, \chi_A \in \mathbb{L}_0^+$. Where $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ and \mathbb{L}_0^+ is the class of all non-negative simple measurable functions on *X*.

5. a). Establish a necessary and sufficient condition for a function $f:[a, b] \to \mathbb{R}$ to be a function of bounded variation on [a, b].

b). Show that the set of all functions of bounded variation on [a, b] forms a vector space under usual addition and multiplication by scalars. 5+5

6. a). If f ∈ R(α) on [a, b], then show that α ∈ R(f) on [a, b]. Also show that ∫_a^b f dα + ∫_a^b α df = f(b)α(b) − f(a)α(a).
(b). Show that every finite sum of real numbers can be expressed as the R-S

integral over some interval.

7. a). Suppose $f: X \to [0, \infty]$ is measurable and $\phi(E) = \int_E f \, d\mu$ for every measurable set *E* in *X*. Show that ϕ is a measure and $\int g \, d\phi = \int gf \, d\mu$ for every measurable function *g* on *X* with range in $[0, \infty]$.

[P. T. O]

5 + 5

b). If $f_n: X \to [0, \infty]$ is measurable for $n = 1, 2, 3, ..., and f(x) = \sum_{n=1}^{\infty} f_n(x)$, $x \in X$, then show that $\int f d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$. 5+5

- 8. (a). Let $f(x) = \frac{1}{x^p}$ if $0 < x \le 1$ and f(0) = 0. Find necessary and sufficient condition on *p* such that $f \in L^1[0, 1]$. Compute $\int_0^1 f(x)\lambda(x)$ in that case.
 - (b). Evaluate the following: $\int_{-1}^{3} 2 \cos x \, d(2x + [x])$. 7+3

[Internal Assessment-10 Marks]