PG CBCS
 M.SC. Semester-III Examination, 2021
 CHEMISTRY

PAPER: CEM 302
(INORGANIC SPECIAL)
Full Marks: 40
Time: 2 Hours

Answer any FOUR questions from the following:

1. (a) Find out the state of hybridization of the central atom in BF_{3} and then find the expression of the hybrid orbitals in term of atomic orbitals (LCAO's).

Character table for $\mathrm{D}_{3 \mathrm{~h}}$ point group is given below.

$\mathrm{D}_{3 \mathrm{~h}}$	E		C	$3 \mathrm{C}_{2}{ }^{\prime}$		$\sigma_{\text {h }}$	$2 \mathrm{~S}_{3}$		σ_{v}		
$\mathrm{A}_{1}{ }^{\prime}$	1		1	1		1	1		1		$x^{2}+y^{2}, z^{2}$
$A_{2}{ }^{\prime}$	1		1	-1		1	1		-1	R_{z}	
E^{\prime}	2		-1	0		2	-1		0	(x, y)	($\left.\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1		1	1		-1	-1		-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1		1	-1		-1	-1		1	z	
$\mathrm{E}^{\prime \prime}$	2		-1	0		-2	1		0	$\left(R_{x}, R_{y}\right)$	(xz, yz)

(b) Why polarization effect is not observed for cubic or higher symmetry group?
2. (a) Prove that the representation of direct product $\Gamma_{A B}$ will contain the totally symmetric representation if the irreducible $\Gamma_{\mathrm{A}}=$ the irreducible Γ_{B}.
(b) Explain why $\mathrm{CoF}_{6}{ }^{3-}$ exhibit single peak but $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ exhibit double peak in their electronic spectra?
(c) What is the "Hole Formalism"?
3. With help of group theoretical principle, find the splitting of d orbitals of the central atom in octahedral environment. Following is the character table for 'O'group.

\mathbf{O}	\mathbf{E}	$\mathbf{8} \mathbf{C}_{\mathbf{3}}$	$\mathbf{3 C}_{\mathbf{2}}\left(=\mathbf{C}_{\mathbf{4}}{ }^{\mathbf{}}\right)$	$\mathbf{6} \mathbf{C}_{\mathbf{4}}$	$\mathbf{6} \mathbf{C}_{\mathbf{2}}$	linears, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	1	-1	-1		
\mathbf{E}	2	-1	2	0	0		$\left(2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}\right),\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
$\mathbf{T}_{\mathbf{1}}$	3	0	-1	1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right),(\mathrm{x}, \mathrm{y}, \mathrm{z})$	
$\mathbf{T}_{\mathbf{2}}$	3	0	-1	-1	1		$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$

4. For trans-dichlorobis(ethylenediamine)cobalt(III) complex the ground state is ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ and excited singlet states are ${ }^{1} \mathrm{~A}_{2 \mathrm{~g}},{ }^{1} \mathrm{E}_{\mathrm{g}}$ and ${ }^{1} \mathrm{~B}_{2 \mathrm{~g}}$. Show that
(i) ${ }^{1} \mathrm{~A}_{1 g} \rightarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ transition is vibronically allowed with (x, y) polarized light but forbidden with z-polarized light.
(ii) ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}} \quad$ and ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~B}_{2 \mathrm{~g}}$ transitions are vibronically allowed with (x, y) and z polarized light.

Character table for $\mathrm{D}_{4 \mathrm{~h}}$ point group is given below:-

$\mathbf{D}_{\mathbf{4 h}}$	\mathbf{E}	$\mathbf{2} \mathbf{C}_{\mathbf{4}}(\mathbf{z})$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{2 C}_{\mathbf{2}}^{\prime}$	$\mathbf{2 C}^{\prime \prime} \mathbf{2}^{\prime}$	\mathbf{i}	$\mathbf{2 S}_{\mathbf{4}}$	$\mathbf{\sigma}_{\mathbf{h}}$	$\mathbf{2 \mathbf { \sigma } _ { \mathbf { v } }}$	$\mathbf{2 \mathbf { \sigma } _ { \mathbf { d } }}$	linears, rotations	quadratic
$\mathbf{A}_{\mathbf{1 g}}$	1	1	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2 g}}$	1	1	1	-1	-1	1	1	1	-1	-1	R_{z}	
$\mathbf{B}_{\mathbf{1 g}}$	1	-1	1	1	-1	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathbf{B}_{\mathbf{2 g}}$	1	-1	1	-1	1	1	-1	1	-1	1		xy
$\mathbf{E}_{\mathbf{g}}$	2	0	-2	0	0	2	0	-2	0	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yz})$
$\mathbf{A}_{\mathbf{1 u}}$	1	1	1	1	1	-1	-1	-1	-1	-1		
$\mathbf{A}_{\mathbf{2 u}}$	1	1	1	-1	-1	-1	-1	-1	1	1	z	
$\mathbf{B}_{\mathbf{1 u}}$	1	-1	1	1	-1	-1	1	-1	-1	1		
$\mathbf{B}_{\mathbf{2 u}}$	1	-1	1	-1	1	-1	1	-1	1	-1		
$\mathbf{E}_{\mathbf{u}}$	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

5. (a) Draw the MO diagram of NH_{3} molecule using projection operator method.

Character table for $\mathrm{C}_{3 v}$ point group is given below:

$\mathrm{C}_{3} \mathrm{r}$	E	$2 \mathrm{C}_{3}(\mathrm{z})$	$3 \sigma_{\mathrm{v}}$	linear, rotations	quadratic
A_{1}	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{\mathbf{2}}$	1	1	-1	R_{z}	
\mathbf{E}	2	-1	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)(\mathrm{xz}, \mathrm{yz})$

(b) How does group theory help in determining the zero and non-zero values of spectroscopic transition moment integral?
(c) State the selection rules for IR active and Raman active molecules.
6. (a) Predict the total number of $\mathrm{Fe}-\mathrm{Fe}$ bonds and show the most stable structure of $\left[\eta^{5}-\right.$ $\left.\mathrm{CpFe}(\mathrm{CO})_{2}\right]_{2}$.
(b) Between the following octahedral complexes (fac isomer), in which case do you observe lowest stretching frequency of CO ? Give reasons.

(c) Write down the expected intermediates and products asked in the following schemes.
(d) $\left[\eta^{5}-\mathrm{CpFe}(\mathrm{CO})\right]_{4}$ shows a single stretching frequency at $1640 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR spectrum shows a single line. Predict the structure based on the given data.
(e) What is agostic Hydrogen? Show the corresponding interacting orbitals with proper labelling.
$1.5+2+1.5+3+2$
7. What is Ziegler-Natta catalyst? Mechanistically explain the stereo regularity of polymerization of olefin with this catalyst.
8. (a) What is "Sandwich compound"? Give an example.
(b) What is the role of hydroiodic acid in Monsento process of acetic acid synthesis? Briefly discuss the catalytic cycle for 'Monsento acetic acid' process using $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{I}_{2}\right]^{-}$ catalyst. Mention oxidation states of ' Rh ' in each step.
(c) What is meant by insertion reaction and oxidative coupling?
9. Write down the complete reaction for the production of $\mathrm{CH}_{3} \mathrm{CHO}$ from $\mathrm{C}_{2} \mathrm{H}_{4}$ by Wacker's process. Write down the rate equation for the process. Draw the catalytic cycle for the process. $2+2+4$
10. (a) Write down the catalytic cycle for the hydroformylation reaction using $\mathrm{HCo}(\mathrm{CO})_{4}$ as catalyst.
(b) Establish the relation:

$$
x(\alpha)=\frac{\operatorname{Sin}\left(l+\frac{1}{2}\right) \alpha}{\operatorname{Sin}\left(\frac{\alpha}{2}\right)}
$$

Where the terms have their usual significance.
(c) Show that the d-orbital whose angular wave function is constant times $\left(\operatorname{Sin}^{2} \theta \operatorname{Cos} 2 \theta\right)$ is $\mathrm{d}_{\mathrm{x}-\mathrm{y}}{ }^{2}$ orbital.
$4+4+2$

