PG (CBCS) M.SC. Semester-III Examination, 2021 CHEMISTRY PAPER: CEM 302 (PHYSICAL SPL.)

Full Marks: 40

Time: 2 Hours

4×10=40

Answer any **FOUR** questions of the following:

- (a) Write down the Hamiltonian of helium atom and show how this converted into atomic unit.
 - (b) State and prove the variation theorem.
 - (c) Consider a hydrogen atom in an electric field in the Z-direction. Obtain the expression for the second order perturbation energy of the atom. 2+3+5
- Write, without derivation, the appropriate expression for the probability of finding the system in a state m, Obtain the expression for the Fermi Golden Rule.
 10
- 3. (a) From the perturbation theory, show the first order nondegenerate energy correction is given by $E_n^{(1)} = \langle \psi_n^0 | H' | \psi_n^0 \rangle$ where H' is the perturbed Hamiltonian and ψ_n^0 is the orthonormal wavefunction of unperturbed system.

(b) Suppose the particle in the box is subjected to potential energy given by the expression

$$V = \begin{cases} kx \text{ for } 0 \le x \le l \\ \infty \quad \text{otherwise} \end{cases}$$

where k is a constant. Find perturbation energy and total energy of the system. 6+4

- 4. Write, without derivation, the appropriate expression for the probability of finding the system in a state m, obtain the expression for the Fermi Golden Rule. 10
- 5. State Hückel approximations for linear conjugated system and hence deduce the expression of energies and wave functions of π -MO for 1,3-butadiene. 10
- 6. What is meant by charge density and bond order for π -conjugated system? Calculate bond order of an allyl cation system. Calculate delocalization energy of 1,3-butadiene.

3+3+4

7. Obtain the symmetry of vibrational modes of H_2O and NH_3 . Character tables of C_{2v} and C_{3v} point groups are given below:

C_{2v}	Е	C ₂	σ_{xz}	σ_{xz}	Ι	II
A ₁	1	1	1	1	T _z , z	x^2, y^2, z^2
A ₂	1	1	-1	-1	Rz	ху
B ₁	1	-1	1	-1	T_x, R_y	ZX
B ₂	1	-1	-1	1	$T_y, R_x,$	yz
						(P.T.O.)

5+5

(2)

C _{3v}	E	2C ₃ (z)	$3\sigma_v$	Linear functions,	
				rotations	
A ₁	+1	+1	+1	Z	
A ₂	+1	+1	-1	Rz	
Е	+2	-1	0	$(\mathbf{x},\mathbf{y})(\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$	

- 8. Obtain the symmetry of IR active modes of SO₂ and CHCl₃. Character tables of C_{2v} and C_{3v} point groups are given in Question No. 7. 5+5
- 9. Obtain the symmetry of Raman active modes of H_2O and $POCl_3$. Character tables of C_{2v} and C_{3v} point groups are given in Question No. 7. 5+5
- 10. (a) Deduce the expression of transformation matrix which transforms one basis to another in an n-dimensional linear vector space.
 - (b) Find the eigenvalues for the following matrix?

$$\begin{bmatrix} -6 & 3\\ 4 & 5 \end{bmatrix}$$
 5+5
