Total pages: 2

PG (CBCS)
M.SC. Semester-III Examination, 2021

CHEMISTRY
PAPER: CEM 302
(PHYSICAL SPL.)
Full Marks: 40
Time: 2 Hours

Answer any FOUR questions of the following:

1. (a) Write down the Hamiltonian of helium atom and show how this converted into atomic unit.
(b) State and prove the variation theorem.
(c) Consider a hydrogen atom in an electric field in the Z-direction. Obtain the expression for the second order perturbation energy of the atom.
2. Write, without derivation, the appropriate expression for the probability of finding the system in a state m, Obtain the expression for the Fermi Golden Rule.
3. (a) From the perturbation theory, show the first order nondegenerate energy correction is given by $\left.E_{n}^{(1)}=<\psi_{n}^{0}\left|\mathrm{H}^{\prime}\right| \psi_{n}^{0}\right\rangle$ where H^{\prime} is the perturbed Hamiltonian and ψ_{n}^{0} is the orthonormal wavefunction of unperturbed system.
(b) Suppose the particle in the box is subjected to potential energy given by the expression

$$
V=\left\{\begin{array}{cc}
k x & \text { for } 0 \leq x \leq l \\
\infty & \text { otherwise }
\end{array}\right.
$$

where k is a constant. Find perturbation energy and total energy of the system. 6+4
4. Write, without derivation, the appropriate expression for the probability of finding the system in a state m, obtain the expression for the Fermi Golden Rule.
5. State Hückel approximations for linear conjugated system and hence deduce the expression of energies and wave functions of π-MO for 1,3-butadiene.
6. What is meant by charge density and bond order for π-conjugated system? Calculate bond order of an allyl cation system. Calculate delocalization energy of 1,3-butadiene.

$$
3+3+4
$$

7. Obtain the symmetry of vibrational modes of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}. Character tables of $\mathrm{C}_{2 \mathrm{v}}$ and $\mathrm{C}_{3 v}$ point groups are given below:

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{xz}	σ_{xz}	I	II
A_{1}	1	1	1	1	$\mathrm{~T}_{\mathrm{z}}, \mathrm{z}$	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{~T}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$	zx
B_{2}	1	-1	-1	1	$\mathrm{~T}_{\mathrm{y}}, \mathrm{R}_{\mathrm{x}}$,	yz

(P.T.O.)
(2)

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}(\mathrm{z})$	$3 \sigma_{\mathrm{v}}$	Linear functions, rotations
A_{1}	+1	+1	+1	z
A_{2}	+1	+1	-1	R_{z}
E	+2	-1	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$

8. Obtain the symmetry of IR active modes of SO_{2} and CHCl_{3}. Character tables of $\mathrm{C}_{2 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ point groups are given in Question No. 7. 5+5
9. Obtain the symmetry of Raman active modes of $\mathrm{H}_{2} \mathrm{O}$ and POCl_{3}. Character tables of $\mathrm{C}_{2 \mathrm{v}}$ and $\mathrm{C}_{3 \mathrm{v}}$ point groups are given in Question No. 7.
10. (a) Deduce the expression of transformation matrix which transforms one basis to another in an n-dimensional linear vector space.
(b) Find the eigenvalues for the following matrix?
$\left[\begin{array}{cc}-6 & 3 \\ 4 & 5\end{array}\right]$
