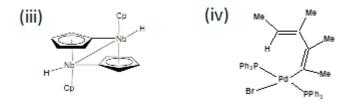
Total Pages: 3

PG CBCS M.SC. Semester-II Examination, 2021 CHEMISTRY

PAPER: CEM 203

(INORGANIC CHEMISTRY - II)

Full Marks: 40 Time: 2 Hours


Answer any FOUR questions:

10X4=40

- 1. (a) Using the 18 electron rule to draw the structure for each of the following compounds:
 - (i) $[(\Box^5-C_5H_5)Mo(CO)_2]_2$, (ii) $Ir_4(CO)_{12}$, (iii) $Os_4(CO)_{16}$, (iv) $[Ru_3(CO)_{10}(PPh_3)_2]$
 - (b) The following reactions have been known to proceed via different mechanisms. Predict products $\bf A$ and $\bf B$, including stereochemistry, and the mechanism for each reaction.(5+5)

A
$$\leftarrow$$
 H₂ trans-Ir(PPh₃)₂(CO)Cl $\xrightarrow{F_3$ CS O₃Me B

- 2. (a) The *cis*-isomer of $L_2Pd(Et)_2$ decomposes immediately to give butane, but the *trans* isomer produces a 1:1 mixture of ethene and ethane. Explain.
 - (b) On forming $[Ir(Br)(CO)\{\eta^2-C_2(CN)_4\}(PPh_3)_2]$ the unique C-C bond in $C_2(CN)_4$ lengthens from 135 to 151 pm. Explain. 5+5
- 3. (a) Which of the following compounds have 18 electrons? Predict the oxidation state for each compound:
 - (i) $[(\Box^7 C_7 H_7) Mo(CO)_3]^+$, (ii) $[(\Box^5 C_9 H_7) Re(CO)_3]$,

- (b) Explain which compound will have the higher CO stretching frequency in each of the following pairs:
- (i) $[Mo(CO)_4(PMe_3)_2]$ and $[W(CO)_4\{P(OMe_3\}_2]$;
- (ii) $[Mn(CO)_6]^+$ and $[V(CO)_6]^-$;
- (iii) Fe(CO)₅ and [Fe(CO)₆]²⁺

4 + 6

- 4. (a) Give an examples of metal alkyls which are stable to □-hydride elimination.
 - (b) When CO becomes coordinated to BH₃ its stretching frequency increases, but when CO becomes coordinated to Ni(CO)₃ its stretching frequency decreases. -Explain. 5+5
- 5. (a) Write down the four important principles to construct the character table for a point group of symmetry.
 - (b) Show the different bonding modes of dinitrogen in dinuclear transition metaldinitrogencomplexs.
 - (c) (b) What is Creutz-Taube complex? Why the chemistry of these complexes was studied?
- 6. (a) What is boron neutron capture therapy? Give at least two example of 1st and 2nd generation BNCT AGENTS.
 - (b) Calculate the styx number of $[B_6H_6]^{-2}$.
 - (c) What is meant by 'Agostic interaction'?

5+3+2

7. (a) Show that $n \to \pi^*$ electronic transition is forbidden but $\pi \to \pi^*$ transition is allowed for HCHO molecule. Character table for C_{2v} point group is given below: 4+2+4

	E	C ₂ (z)	σ _v (xz)	σ _v (yz)	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	z	x^2 , y^2 , z^2
$\mathbf{A_2}$	1	1	-1	-1	R _z	xy
$\mathbf{B_1}$	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

(b) State the selection rules for IR and Raman transition.

(c) What do you mean by "Exclusion principle"? Justify this principle using *trans*- N_2F_2 as an example. Character table for C_{2h} point group is given below:

C_{2h}	E	C_2	i	σ_{h}	
$\overline{A_g}$	1	1	1	1	R_x , x^2 , y^2 , z^2 , xy
$\mathbf{B}_{\mathbf{g}}$	1	-1	1	-1	R_x, R_y xz, yz
A_{u}	1	1	-1	-1	z
\mathbf{B}_{u}	1	-1	-1	1	x,y

8. (a) What is projection operators?

2+4+4

- (b) Find the IR and Raman active modes of H₂O molecule.
- (c) The following table is given for C_{3v} point group:

C_{3v}			
Γ_1	1	1	1
Γ_2	1	L	M
Γ_3	2	P	Q

Find the Value for L, M, P &Q. Write down the Mulliken term symbol for Γ_1 , Γ_2 , Γ_3 .

OR

Draw the M.O. diagram for H₂O molecule using projection operator technique.
