
(vi) Given $\vec{\nabla} \cdot(\vec{\nabla} \times \overrightarrow{\mathrm{A}})=0$; what is the significance of vector $\overrightarrow{\mathrm{A}}$? $\quad 3+5+2+4+5+1$
2. (i) Find the constant a, b, c if a vector \vec{V} is irrotational, where $\vec{V}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$
(ii) Show that the necessary and sufficient condition for a vector $\vec{r}=\vec{f}(t)$ to have constant magnitude is $\mathrm{f} . \mathrm{df} / \mathrm{dt}=0$.
(iii) Evaluate $\iint_{s} \overrightarrow{\mathrm{~F}} . \hat{\mathrm{n} d s}$, where $\overrightarrow{\mathrm{F}}=4 \mathrm{xzi}-\mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{yz} \hat{\mathrm{k}}$ and s is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
3. (i) Find the constant c , such that the function
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}-\mathrm{cx}^{2}, 0<\mathrm{cx}<3 \\ 0, \text { otherwise }\end{array}\right.$ is a density function, and compute probability $\mathrm{p}(1<\mathrm{x}$ <2)
(ii) Show that $\mathrm{F}(\mathrm{r}) \hat{\mathrm{r}}$ is irrotational.
(iii) Obtain the expression of ∇^{2} in plane polar co-ordinates.
(iv) If $\vec{a} \cdot(\vec{b} \times \vec{c})=0$ then write its significance.
4. (a) Write the Gaussian distribution function. Mention a physical phenomena that follow Gaumian distribution.
(b) Write a note on Divac delta function
(c) What is scalar and vector field?
(d) Define the directional derivative.
(e) If a, b, c are unit vectors satisfying the condition $\vec{a}+\vec{b}+\vec{c}=0$, show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-3 / 2$
(f) Write the expression of the Gradient of φ in cylindrical polar co-ordinate system; φ is scalar quantity.
$(2+2)+4+3+3+4+2$

Paper - C-1-P
 (Mathematical Physics - I Lab)
 (Practical)

Full Marks : 20

Answer any one question from the following:

$$
1 \times 20=20
$$

- Write the necessary formula.
- Write the computer code in PYTHON
- Print the input and output

1. (i) Write a computer program to find the product of following matrices

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
3 & 2 & 1 \\
9 & 8 & 7 \\
6 & 5 & 4
\end{array}\right]
$$

(ii) Consider the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-t^{2}} d t
$$

the values of which are given as

x	1.0	1.2	1.4	1.6	1.8	2.0
$\operatorname{erf}(\mathrm{x})$	0.84270	0.91031	0.95229	0.97635	0.98909	0.99532

Write a forward or backward difference interpolation program to calculate the value of $\operatorname{erf}(1.433)$.
2. (i) Given some data : $\mathrm{x}=28,75,87,92,132,54,67$, 12; find the (arithmetic) mean and rms value of the carriable x .
(ii) Write a computer program to find the cosine series

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots
$$

3. (i) Write a computer program to compute n !, where $n=10$.
(ii) Write a computer program following Newton-Raphson method to find out a real root of the equation $\cos x=3 x-1$ around $x \approx 1$.
4. (i) Write a computer program to check whether 153 is Armstrong number.
(ii) Compute: $\int_{1.8}^{3.4} f(x) d x$, where we have

x	1.8	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4
$\mathrm{f}(\mathrm{x})$	6.050	7.389	9.025	11.023	13.464	16.445	20.086	24.533	29.964

5. (i) Write a computer program to check 1999 and 2020 are leap year or not.
(ii) The temperature θ of a well stired liquid by the isothermal heating coil is given by the equation :
$\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{K}(100-\theta)$
where K is a constant of the system. Write a computer program to solve the equation by Runge-Kutta fourth order method to find θ at $t=1.0 \mathrm{sec}$ for $K=$ 2.5. Initial condition : $\theta=25^{\circ} \mathrm{C}$ at $\mathrm{t}=0 \mathrm{sec}$.
6. (i) Write a program to calculate variance and standard deviation of five numbers : $34,88,32,12,10$.
(ii) Calculate the value of the elliptical integral of the first kind :

$$
K(0.25)=\int_{0}^{\pi / 2} \frac{d x}{\sqrt{1-0.25 \sin ^{2} x}}
$$

Divide the intervals $[0, \pi / 2]$ into 1000 equal parts and use composite Trapezoidal rule to evaluate the integral $8+12$
7. (i) Write a computer program where you utilize random number generator to evaluate the value of π with the level of accuracy of 10^{-4}.
(ii) Compute :

$$
\begin{align*}
& \binom{N}{n}=\frac{N!}{n!(N-n)!} \\
& \text { for } N=15, n=6
\end{align*}
$$

8. (i) Write a computer program to find out the sum of digits of 87694 .
(ii) Compute the value of π from the formula :
$\frac{\pi}{4}=\int_{0}^{1} \frac{\mathrm{dx}}{\mathrm{x}^{2}+1}$
Use composite Simpson's $1 / 3$ rule to evaluate with an accuracy of the order of 10^{-5}.
9. (i) Write a program to verify approximately,

$$
\ln 100!\approx 100 \ln 100-100
$$

(ii) The distance travelled by a car in km , at intervals of 2 min are given as follows :

Time (min)	2	4	6	8	10
Distance (km)	0.75	2.00	3.50	5.35	8.00

Write a computer program to evaluate the velocity at $t=5 \mathrm{~min}$.
10. (i) A set of 20 numbers are given : $1,0.1,5,4,10,-1,3,20,1000,-9,2,14$, $4.5,0.9,30,9.8,11,22,38,-10$. Write a computer program to count how many numbers are there between 0 to 10 .
(ii) Write a computer program to find the roots of the equation
$x^{3}-3 x+5=0$
by Bisection method.

