বিদাসাগা বিশবব্ধালালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examinations 2020

(Under CBCS Pattern)
Semester - V
Subject: PHYSICS
Paper: C11T \& C11P
(Quantum Mechanics and Applications)
Full Marks : 60
Time : 3 Hours

Candiates are required to give their answer in their own words as far as practicable.
The figures in the margin indicate full marks.

Group - A

THEORY (Marks : 40)

Answer any $\boldsymbol{t w o}$ from the following questions :

1. Answer any five questions from the following :
(a) What is Gyromagnetic ratio for the orbital and spin motion of an electron in an atom.
(b) State Paul's exclusion principle. Give electronic configuration for the element. $N i(Z=28)$.
(c) Find the precessional frequency of an electron orbit when placed in magnetic field of $6 \mathrm{~Wb} / \mathrm{m}^{2}$.
(d) Calculate the value of lowest energy of an electron in a one dimensional force free region of length $4 \mathrm{~A}^{\circ}$.
(e) Distinguish between a classical and quantum harmonic oscillator.
(f) Calculate the normalization constant for a wave function (at $t=0$) given by $\Psi(x)=a e^{-a^{2} x^{2} / 2} e^{i k x}$ known as a Gaussian wave packet.
(g) What is Larmor's theorem ?
2. (a) (i) Using Heisenberg uncertainty principle, calculate the ground state energy and radius of hydrogen and helium atom.
(ii) Using the energy-time uncertaity principle calculate the width of the spectral line when the atom de-exites to the gound state.
(iii) Using the uncertainty principle, show that an alpha particle can exist inside a nucleus.
(b) (i) State and prove Ehrenfest's theorem.
(ii) What are the continuity and boundary conditions that must be satisfied for a wave function to be physically acceptable?
(iii) Show that the uncertainty relation $\Delta x \Delta p \geq \hbar / 2$ is satisfied in the case of particle in a one-dimensional box. $(\hbar=h / 2 \pi)$
(iv) Calculate the probability that a particle in a one-dimensional box a length L can be found between 0.4 L to 0.6 L for the (a) ground state, (b) first excited state, (c) second excited state. $3+2+3+2$
3. (a) (i) What is Anomalous Zeeman effect? Explain with the help of diagram the transition between 3d and 2p levels in a Normal Zeeman effect.
$3+2$
(ii) Calculate the Lande g factor for the following states: (i) $3^{2} S_{1 / 2}$ (ii) $4{ }^{2} P_{1 / 2}$.
(b) (i) The normalized ground state wave function of hydrogen atom is given by, $\Psi(r, \theta, \varphi)=\frac{1}{\sqrt{\pi a^{3 / 2}}} e^{-2 r / a}, 0<r<\infty$. Find the value of $\left\langle\frac{1}{r}\right\rangle$
(ii) Write down the Hamiltonian for the hydrogen atom.
(iii) Prove that for the hydrogen atom the wave functions Ψ_{100} and Ψ_{200} are orthogonal.
(iv) What do you mean by the degeneracy of state ?
4. (a) Define the creation $\left(a^{+}\right)$and annihilation (a) operators for a harmonic oscillator and show that $\widehat{H}=\hbar \omega\left(a^{+} a+\frac{1}{2}\right)$
(b) A particle in the harmonic oscillator potential starts out in the state

$$
\psi(x, 0)=A\left[3 \psi_{0}(x)+4 \psi_{1}(x)\right]
$$

(A) Find A (B) Construct $\psi(x, t)$ and $|\psi(x, t)|^{2}$
(c) Suppose a particle starts out in a linear combination of just two stationary states:

$$
\psi(x, 0)=c 1 \psi_{1}(x)+c 2 \psi_{2}(x)
$$

(i) What is the wave function $\psi(x, t)$ at subsequent times?
(ii) Is it a stationary state ?
(iii) Discuss briefly, with theory, the Stren-Gerlach experiment. Justify the use of a bean of silver atoms in the experiment.

Group - B

PRACTICAL (Marks : 20)

Answer any one from the following questions:

1. Demonstrate in details the tunneling effect in tunnel diode using I-V characteristics.
2. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule :

$$
\frac{d^{2} y}{d r^{2}}=A(r) u(r), A(r)=\frac{2 \mu}{h^{2}}[V(r)-E]
$$

Where μ is the reduced mass of the two-atom system for the Morse potential
$V(r)=D\left(e^{-2 \alpha r^{\prime}}-e^{-\alpha r^{\prime}}\right), r^{\prime}=\frac{r-r_{0}}{r}$
Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take $m=940 \times 10^{6} \mathrm{eV} / C^{2}, D=0.755501 \mathrm{eV}, \alpha=1.44, r_{0}=0.131349 \AA$
3. Solve the s-wave radial Schrodinger equation for a particle of mass m :
$\frac{d^{2} y}{d r^{2}}=A(r) u(r), A(r)=\frac{2 m}{h^{2}}[V(r)-E]$
For the anharmonic oscillator potential.
$V(r)=\frac{1}{2} k r^{2}+\frac{1}{3} b r^{3}$
for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function.

Choose $m=940 \mathrm{MeV} / c^{2}, k=100 \mathrm{MeV} \mathrm{fm}{ }^{-2}, b=0,10,30 \mathrm{MeV} \mathrm{fm}{ }^{-3}$.
In these units, $c \hbar=197.3 \mathrm{MeV} \mathrm{fm}$. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

