
(iii) Solve : $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{x y z-2 x^{2}}$.
(iv) Show that $[a+\beta, \beta+\gamma, \gamma+a]=2[a \beta \gamma]$ $3+6+3+5+3$
2. (i) Show that $(y z+x y z) d x+(z x+x y z) d y+(x y+x y z) d z=0$ is integrable and hence solve it.
(ii) Find the particular integral of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} e^{3 x}$.
(iii) Find the value of a for which the vector $V=(x+3 y) i+(y+a z) j+(x+a z) k$ is solenoidal.
(iv) If $\sum_{m=0}^{\infty} C_{m} x^{r+m}$ is assumed to be a solution of $x^{2} y^{\prime \prime}-x y^{\prime}-3\left(1+x^{2}\right) y=0$ then find the values of r.
(v) Find the Wronskian of the following set $\{\sin 3 x, \cos 3 x\}$.
3. (i) Solve the differential equation
$\frac{d^{2} y}{d x^{2}}+9 y=\frac{1}{4} \operatorname{cosec} 3 x$ by the method of variation of parameters.
(ii) Find the equlilbrium point of the system of differential equations

$$
x=e^{x-1}-1 \text { and } \dot{y}=y e^{x} .
$$

(iii) If $V=x y i-z^{2} j+x y z k$, then show that $\int_{c} V \cdot d r=\frac{1}{3}$ when the integral is taken from $(0,00)$ to $(1,1,1)$ along curve $r=t i+t^{2} j+t^{3} k$.
(iv) Let $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ be a solution of the system of equation $\left[\begin{array}{l}y_{1}^{\prime} \\ y_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ a & b\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ where $a, b \in R$. Then prove that every solution $y(x) \rightarrow 0$ as $x \rightarrow \infty$ if $a<0$ and $b<0$.
4. (i) Solve the differential equaiton :

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=x+e^{x} \sin x \text { by the method of undetermined coefficient. }
$$

(ii) Solve :

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{d y}{d t}+2 x+y=0 \\
& \frac{d y}{d t}+5 x+3 y=0
\end{aligned}
$$

(iii) If $r=(a \cos t) i+(a \sin t) j+(a t \tan \alpha) k$, then show that $\left|\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}\right|=a^{2} \sec \alpha$.
(iv) Show that $x=0$ is the regular singular point of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}} 7 x(x+1) \frac{d y}{d x}-3 y=0 .
$$

5. (i) Find the power series solution of the equaiton $\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0$ about $x=0$.
(ii) Show that $\frac{d y}{d x}=3 y^{\frac{2}{3}}, y(0)=0$ has more than one solution and indicate the possible region.
(iii) If $a=(3,1,1), b=(1,-2,2), c=(4,1,3)$, than calculate $a .(b \times c)$ and state geometrical meaning of the result.
(iv) Solve the equation $\frac{d x}{d t}=-w y$ and $\frac{d y}{d t}=w x$ and show that point (x, y) lies on a circle. $8+3+5+4$
6. (i) Find the value of the constant d such that the vectors $(2 i-j+k),(i+2 j-3 k)$ and $(3 i+d j+5 k)$ are coplanar.
(ii) If u and v be two independent solutions of the linear equation

$$
\frac{d^{2} y}{d x^{2}}+p \frac{d y}{d x}+Q y=0
$$

then prove that the Wronskian $W(u, v)$ is given by $W(u, v)=A e^{-\int p d x}$ where A is constant.
(iii) Solve $\frac{d^{4} y}{d x^{4}}+a^{4} y=0$.
(iv) Solve $x^{2} \frac{d^{2} y}{d x^{2}}-x(x+2) \frac{d y}{d x}+(x+2) y=0$ given $y=x$ is a solution.
(v) Find the order and degree of the differential equation $y=x \frac{d y}{d x}+a \frac{d x}{d y} .4+5+4+5+2$

GROUP THEORY - I

Answer any three from the following questions :

1. (a) Prove that the see of all ratinal numbers, other than 1 , forms a commutative group with respect to the composition * defined by $a^{*} b=a+b-1$ for $a, b \in \mathbb{Q}-\{1\}$.
(b) Show that intersection of two subgroup of a group G is a subgroup of G. Is the result true fo union? Justify.
(c) Prove that any two left cosets of a group G have the same number of elements.6
2. (a) Prove that if $a^{2}=e$, for all $a \in G$, then G is an abelian group. 5
(b) Find all cyclic subroups of the symmetric groups S_{3}.
(c) Prove that every subgroup of a cyclic group is cyclic.
(d) Let G be a group and H be a subgroup of G. Let $g \in G$ be fixed. Prove that the subset $K=\left\{g h g^{-1}: h \in H\right\}$ forms a subgroup of G.
3. (a) Prove that the alternating group A_{3} is a normal subgroup of the symmetric group S_{3}.
(b) Prove that every group of order less than 6 is commutative.
(c) State and prove Lagrange's theorem on finite group.
4. (a) Prove that every proper subgroup of a group order 6 is cyclic.
(b) Prove that every group of prime order is cyclic. Is the converse true ? Justify. 8
(c) Let H be a subgroup of a group G and $[G: H]=2$. Prove that H is a normal subgroup of G.
5. (a) Let $G=(\mathbb{Z},+)$ and a mapping $\varphi: G \rightarrow G$ be defined by $\varphi(x)=x+1, x \in G$. Examine if φ is a homomorphism.
(b) If H be a subgroup of a commutative group G, prove that the quotient group $\frac{G}{H}$ is commutative.
(c) Prove that the center $Z(G)$ of a group G is a normal subgroup of G.
(d) State and prove the first isomorphism theorem.
6. (a) Let $\varphi:(G, 0) \rightarrow\left(G_{1}, *\right)$ be a homomorphism. Then prove that $\operatorname{ker} \varphi$ is a normal subgroup of G.
(b) Show that the group $(\mathbb{Q},+)$ and $(\mathbb{R},+)$ are not isomorphic.
(c) Let $\varphi:(G, 0) \rightarrow\left(G_{1},{ }^{*}\right)$ be an isomorphism. Then prove that G_{1} is cyclic if and only if G is cyclic.

THEORY OF REAL FUNCTIONS AND INTRODUCTION TO METRIC

Answer any three from the following questions :

1. (a) State and prove Rollle's theorem.
(b) In the Mean value theorem $f(h)=f(0)+h f(\theta h), 0<\theta<1$, show that the limiting value of θ as $h \rightarrow 0^{+}$is $1 / 2$ or $1 / \sqrt{3}$ according as $f(x)$ is $\cos x$ or $\sin x$. 8
(c) Write the geometrical interpretation of Lagrange's Mean Value theorem.
2. (a) State and prove Darboux's theorem.
(b) Prove that $\cos x>x-\frac{x^{2}}{2}$, if $0<x<\frac{\pi}{2}$.
(c) Expand the function $(1+x)^{p}$ in power of x in infinite series stating in each case the conditions under which the expansion is valid.
3. (a) State and porve Maclaurin's theorem with Cauchy's form of reamainder.
(b) Show that the maximum value of $x+\frac{1}{x}$ is less than its minimum value. Explain why?
(c) Show that the largest rectangle with a given perimeter is a square.
4. (a) Is the function

$$
\begin{array}{rlr}
f(x)=\sin (1 / x), & x \neq 0 \\
& =0 & \\
x=0
\end{array}
$$

continuous at the origin ?
(b) Show that the functin f defined by $f(x)=\sin x, x \in \mathbb{R}$ is uniformly continuous on \mathbb{R}.
(c) If $-1<x<1$, then prove $\lim _{n \rightarrow \infty} x^{n}=0$ where n is a positive integer.
5. (a) Define metric space. Show that the Euclidean space \mathbb{R}^{n} is a metric space.
(b) Let $C[a, b]$ be the collection of all real valued continuous functions over the closed interval $[a, b]$. Let $d: C[a, b] \times C[a, b] \rightarrow \mathbb{R}$ be defined by $\sup _{a \leq t \leq b}\{|f(t)-g(t)|, \forall f, g \in[a, b]\}$.
(c) Show that $\forall x, y \in \mathbb{R}, d(x, y)=\left|\tan ^{-1} x-\tan ^{-1} y\right|$ is a metric on \mathbb{R} and also bouded.
6. (a) Let $A=\left\{(x, y): x^{2}+y^{2}=1\right\}, B=\left\{(x, y):(x-1)^{2}+y^{2}=1\right\}$. Find the diameter of $A \cup B$ and $A \cap B$ with respect to usual metric.
(b) Define open spheres and closed spheres. Prove that, in a metric space, any open sphere is an open set.
(c) Prove that arbitrary intersection of a closed set in a metric space is a closed set.

