
(e) In n be a positive integer and $(7+2 i)^{n}=a+i b$, then prove that $a^{2}+b^{2}=(53)^{n}$. Hence express $(53)^{2}$ as the sum of two squares.
(f) Examine if the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\}$ is a subspace of \mathbb{R}^{3}.
(g) If $2^{n}-1$ be a prime, prove that n is a prime.
(h) If n be a positive integer greater than 2 , then prove that $(n!)^{2}>n^{n}$.
(i) If the roots α, β, γ of the equation $x^{3}+q x+r=0$ be in A.P then show that the rank of the matrix $\left(\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is 2 .
(j) Define eigen value of a matrix of order n. If λ be an eigen value of an $n \times n$ idempotent matrix A , then prove that λ is either 1 or 0 .
2. (a) Find eigen values and a basis of each eigen space for the operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(2 x+y, y-z, 2 y+4 z)$.
(b) Find the roots of $z^{n}=(z+1)^{n}$, where n is a positive integer, and show that the points which represent them in the Argand diagram are collinear.
(c) If the roots of the equation $a_{0} x^{n}+n a_{1} x^{n-1}+\frac{n(n-1)}{2!} a_{2} x^{n-2}+\ldots+a_{n}=0$ be in A.P., show that they can be determined from the expression $-\frac{a_{1}}{a_{0}} \pm \frac{r}{a_{0}} \sqrt{\left[\frac{3\left(a_{1}^{2}-a_{0} a_{2}\right)}{n+1}\right]}$
by giving r the values $1,3,5, \ldots, n-1$ when n is even and all the values $0,2,4, \ldots$, $n-1$ when n is odd.
3. (a) Prove that interchange of two rows does not alter the rank of a matrix.
(b) Prove that the product of any m consecutive integers is divisible by m.
(c) For what integral values of $m, x^{2}+x+1$ is a factor of $x^{2 m}+x^{m}+1$?
(d) If α be a root of the equation $x^{3}-3 x-1=0$, prove that the other roots are $2-\alpha^{2}, \alpha^{2}-\alpha-2$.
(e) If $i^{\alpha+i \beta}=\alpha+i \beta$ then prove that $\alpha^{2}+\beta^{2}=e^{-(4 n+1) \pi \beta}$.
4. (a) Solve completely the equation $x^{4}-5 x^{3}+11 x^{2}-13 x+6=0$ using the fact that two of its roots α and β are connected by the relation $3 \alpha+2 \beta=7$.
(b) If n be positive integer, prove that $\frac{1}{\sqrt{4 n+1}}<\frac{3.7 .11 \ldots(4 n-1)}{5.9 .13 \ldots(4 n+1)}<\sqrt{\frac{3}{4 n+3}}$
(c) Find the maximum value of $(x+2)^{5}(7-x)^{4}$ when $-2<x<7$.
(d) Prove that the vector space P of all real polynomials is infinite dimensional.
(e) Define a basis of a vector space. Prove that the rank of a vector space is unique. 2
5. (a) Find for what values of a and b the following system of equations has (i) a unique solution (ii) no solution (iii) infinite number of solutions over the field of rational numbers $x_{1}+4 x_{2}+2 x_{3}=1,2 x_{1}+7 x_{2}+5 x_{3}=2 b, 4 x_{1}+a x_{2}+10 x_{3}=2 b+1$.
(b) Prove that V is the vector space of polynomials in x of degree $\leq n$ over \mathbb{R}. Show that the set $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis of V.
(c) Prove that $x^{8}+y^{8}=\prod\left(x^{2}-2 x y \cos \frac{r \pi}{8}+y^{2}\right), r=1,3,5,7$.
6. (a) Prove that for any two integers a and $b, a \equiv b(\bmod m)$ iff a an b leave the same remainder when divided by m.
(b) If $\alpha, \beta, \gamma \mathrm{b}$ the roots of $x^{3}-q x+r=0$, find the equation whose roots are
$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}, \frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}, \frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}$
and hence calculate the value of
$\left(\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}-\frac{1}{\gamma^{2}}\right)\left(\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}-\frac{1}{\alpha^{2}}\right)\left(\frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}-\frac{1}{\beta^{2}}\right)$
8
(c) If $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n}$ be all real numbers, then show that $\left(a_{1}^{2}+a_{2}^{2}+\ldots .+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right)>\left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)$, when $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are not proportional.

