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Answer any three from the following questions : 3×20

1. (a) If A and P be both n × n matrices and P be non singular, then A and 1P AP  have the
same eigen values. 2

(b) If a is prime to b, prove that a b  is prime to ab. 2

(c) Z is a complex number satisfying the condition 
3

2z
z

  . Find the greatest and the

least value of z . 2

(d) A and B are real orthogonal matrices of the same order and 0A B  . Show that

A B  is a singular matrix. 2
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(e) In n be a positive integer and  7 2
n

i a ib   , then prove that  2 2 53
n

a b  .

Hence express  2
53  as the sum of two squares. 2

(f) Examine if the set   3 2 2 2, , :S x y z x y z     is a subspace of 3 . 2

(g) If 2 1n   be a prime, prove that n  is a prime. 2

(h) If n  be a positive integer greater than 2, then prove that  2
! nn n . 2

(i) If the roots , ,    of the equation 3 0x qx r    be in A.P then show that the rank

of the matrix 

  
  
  

 
 
 
 
 

 is 2. 2

(j) Define eigen value of a matrix of order n. If   be an eigen value of an n × n

idempotent matrix A, then prove that   is either 1 or 0. 2

2. (a) Find eigen values and a basis of each eigen space for the operator 3 3:T  

defined by    , , 2 , , 2 4T x y z x y y z y z    . 6

(b) Find the roots of  1
nnz z  , where n is a positive integer, and show that the points

which represent them in the Argand diagram are collinear. 6

(c) If the roots of the equation 
 1 2

0 1 2

1
... 0

2!
n n n

n

n n
a x na x a x a 

      be in A.P.,

show that they can be determined from the expression

 2
1 0 21

0 0

3

1

a a aa r

a a n

 
  

  

by giving r the values 1, 3, 5, ..., n – 1 when n is even and all the values 0, 2, 4, ...,
n – 1 when n is odd. 8

3. (a) Prove that interchange of two rows does not alter the rank of a matrix. 5

(b) Prove that the product of any m consecutive integers is divisible by m. 5



(c) For what integral values of 2, 1m x x   is a factor of 2 1m mx x   ? 6

(d) If   be a root of the equation 3 3 1 0x x   , prove that the other roots are
2 22 , 2     . 2

(e) If ii i      then prove that  4 12 2 ne     . 2

4. (a) Solve completely the equation  4 3 25 11 13 6 0x x x x      using the fact that two of

its roots   and   are connected by the relation 3 2 7   . 8

(b) If n be positive integer, prove that  
 

3.7.11... 4 11 3

5.9.13... 4 1 4 34 1

n

n nn


 

 
6

(c) Find the maximum value of    5 4
2 7x x   when  2 7x   . 2

(d) Prove that the vector space P of all real polynomials is infinite dimensional. 2

(e) Define a basis of a vector space. Prove that the rank of a vector space is unique. 2

5. (a) Find for what values of a and b the following system of equations has (i) a unique
solution (ii) no solution (iii) infinite number of solutions over the field of rational numbers

1 2 3 1 2 3 1 2 34 2 1,2 7 5 2 , 4 10 2 1x x x x x x b x ax x b          . 8

(b) Prove that V is the vector space of polynomials in x of degree n  over  . Show that

the set  21, , ,..., nS x x x  is a basis of V. 6

(c) Prove that 8 8 2 22 cos , 1, 3, 5, 7
8

r
x y x xy y r

      
 

 . 6

6. (a) Prove that for any two integers a and b, a b (mod m) iff a an b leave the same
remainder when divided by m. 6

(b) If , ,    b the roots of 3 0x qx r   , find the equation whose roots are

2 2 2

1 1 1

  
  , 2 2 2

1 1 1

  
  , 2 2 2

1 1 1

  
 



and hence calculate the value of

2 2 2

1 1 1

  
 

  
 

 2 2 2

1 1 1

  
 

  
 

 2 2 2

1 1 1

  
 

  
 

8

(c) If 1 2 1 2, ,..., ; , ,...,n na a a b b b  be all real numbers, then show that

     2 2 2 2 2 2
1 2 1 2 1 1 2 2.... ... ...n n n na a a b b b a b a b a b          , when  1 2, , ..., na a a

and  1 2, ,..., nb b b  are not proportional. 6
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