

## বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

## Question Paper

## B.Sc. Honours Examinations 2020

(Under CBCS Pattern)
Semester - V
Subject: MATHEMATICS
Paper: C11T
(Partial Differential Equations \& Applications)
Full Marks : 60
Time : 3 Hours

Candiates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt any three questions.
$3 \times 20=60$

1. (a) Find the integral surface passing through the curve $y^{2}+z^{2}=1, x+z=2$ and corresponding to the PDE $4 y z p+q=-2 y$. 10
(b) (i) Find PDE corresponding to the equation $z=x y+f\left(x^{2}+y^{2}\right), f$ being an arbitrary function.
(ii) Find the PDE of the family of right circular cone whose axis coincides with z axis.
2. (a) Reduce the PDE $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$ to $\frac{\partial^{2} z}{\partial u \partial v}=0$ by $u=x-c t, v=x+c t$.
(b) (i) Solve the PDE by Lagrange's method $p y+q x=x y z^{2}\left(x^{2}-y^{2}\right)$.
(ii) Solve the PDE $p x+q y=z(1+p q)^{1 / 2}$.
3. (a) Solve the following one dimensional heat equation

$$
\frac{\partial T}{\partial t}-k \frac{\partial^{2} T}{\partial x^{2}}=0,0 \leq x \leq l, t \geq 0
$$

Subject to the condition
(i) $T(x, 0)=f(x)=l-x, 0 \leq x \leq l$
(ii) $T(0, t)=T(l, t)=0, t \geq 0$
(iii) $T(x, t)<\infty$ as $t \rightarrow \infty$.

Hence evaluate $\lim _{t \rightarrow \infty} T(x, t)$.
where $k$ is a constant.
(b) Find the general solution of the PDE $x\left(y^{n}-z^{n}\right) p+y\left(z^{n}-x^{n}\right) q=z\left(x^{n}-y^{n}\right) . \quad 5$
4. (a) Find the solution of the following two-dimensional Laplace Equation at any interior of the rectangle $0 \leq x \leq a, 0 \leq y \leq b, \frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0$, subject to the boundary conditions $\varphi_{x}(0, y)=\varphi_{y}(a, y)=0,0 \leq y \leq b$ and $\varphi_{y}(x, 0)=0 ; \varphi_{y}(x, b)=f(x), 0 \leq x \leq a$.
(b) Find the complete integral of the PDE $z^{2}=\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} x y$, by Charpit's method.
5. (a) Solve the following equation for a string of finite length $u_{t t}-9 u_{x x}=0,0 \leq x \leq 2, t \geq 0$. Subject to the boundary conditions $u(0, t)=u_{t}(0, t)=0, u(2, t)=u_{t}(2, t)=0, t \geq 0$ and the initial condition $u(x, 0)=x, u_{t}(x, 0)=0,0 \leq x \leq 2$.
(b) The general solution of the equation $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) u=e^{x+2 y}$.
6. (a) Solve the one dimensional wave equation of infinite string $u_{t t}-c^{2} u_{x x}=0,0 \leq x \leq \infty, t \geq 0$
subuject to the initial coditions $u(x, 0)=f(x), u_{t}(x, 0)=g(x), x \geq 0$ and the boundary condition $u(0, t)=0, t \geq 0$.
(b) Find the P.I of the equation $\left(D-D^{\prime}\right)^{2} z=\tan (x+y)$.

