Total Pages - 6

UG/5th Sem/CHEM(H)/T/19

2019

B.Sc. (Honours)

5th Semester Examination

CHEMISTRY

Paper - C11T

Inorganic Chemistry - IV

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

- 2×5=10
- (a) Explain the abnormal magnetic moment of $\operatorname{Cu}_2(\operatorname{acac})_4 \cdot (\operatorname{H}_2\operatorname{O})_2$ complex.
- (b) The $\left[\text{Ni}(\text{CN})_4\right]^{2-}$ ion is square planar whereas $\left[\text{NiCl}_4\right]^{2-}$ is tetrahedral Explain.

[Turn Over]

- (c) Explain the composition of the following complexes $[CuF_6]^{3-}$ and $[AuF_4]^{-}$.
- (d) The complex $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+}$ is light pink whereas $\left[\text{COCl}_4\right]^{2-}$ is deep blue Explain.
- (e) Explain the order of LMCT energies for the following anions —

MnO₄, CrO₄²⁻, VO₄³⁻.

- (f) Calculate the value of magnetic moment for high spin and low spin complex of Cr²⁺.
- (g) What change in magnetic properties can be expected when NO_2^- ligand in $\left[Co(NO_2)_6\right]^{3-}$ are replaced by Cl⁻ ligand?
- (h) Actinides have high complex formation ability than lanthanides Explain.

(3) Group - B

A		1	, •	
angwer	anv	TONIN	questions:	
TIMALOI	curry	Juni	questions.	

5×4=20

- 2. (a) Draw the orgel diagram for $\left[\text{Ni}(\text{H}_2\text{O})_6\right]^{2+}$ complex and calculate the value of Δ_0 .
 - (b) High spin octahedral complexes of Co(II) have magnetic moments much higher than the spin-only values on the other hand, the low spin complexes of Co(II) have magnetic moment slightly higher than the spin only values Comment. 2
- 3. (a) What type of electronic transitions are responsible for colour of lanthanides?
 - (b) In general UV visible absorption bands of transition metal complex are unsymmetric and broad, whereas those of lanthanoid ion (Ln⁺³) complexes are sharp Explain.
 - (c) Identify the Ground State term symbol for D_y^{3+} ion.
- 4. (a) Define Russel-Saunder's Coupling. 2
 - (b) With the help of CFT predict the structures of Co_3O_4 and Fe_3O_4 .

[Turn Over]

5. (a) $\left[\text{Co(NH}_3)_6\right]^{3+}$ $\Delta_0 = 23,000 \text{ cm}^{-1}$

 $\left[\text{Rh} \left(\text{NH}_3 \right)_6 \right]^{3+} \qquad \Delta_0 = 34,000 \text{ cm}^{-1}$

 $\left[\text{Ir} \left(\text{NH}_3 \right)_6 \right]^{3+} \qquad \Delta_0 = 41,000 \text{ cm}^{-1}$

— Justify the trend.

2

2

(b) State John-Teller Theorem. In which of the following electronic configuration this effect would be observed —

$$t_{2g}^3 e_g^1 \text{ or } t_{2g}^6 e_g^2$$
 1+2

- 6. (a) Explain the variation of hydration energies of the divalent 3d series transition metal halides. 2
 - (b) $K_2[NiF_6]$ is diamagnetic while $K_3[CoF_6]$ is paramagnetic though both have same 'd' configuration Explain on the basis of CFT.

Write down the correct order of enthalpies of hydration of Ca⁺², Mn⁺² and Zn⁺².

(5)

- 7. (a) Explain the Ion exchange method for separation of lanthanides.
 - (b) What do you mean by "Mischmetal"?

Group - C

Answer any *one* question: $10 \times 1 = 10$

8. (a) What are magnetically dilute and magnetically concentrated substances? Give example of each.

(b) $\left[\operatorname{Ni}(\operatorname{H}_2\operatorname{O})_6\right]^{2+} + 3\operatorname{en} \longrightarrow \left[\operatorname{Ni}(\operatorname{en})_3\right]^{2+}$ $\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_6\right]^{2+} + 3\operatorname{en} \longrightarrow \left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_2(\operatorname{en})_2\right]^{2+}$

but not $\left[\operatorname{Cu}(\operatorname{en})_3\right]^{2+}$

For the 1st case complete substitution occurs but in the 2nd case Partial Substitution occurs. — Explain.

[Turn Over]

(c) The colour of trans - $\left[\operatorname{Co(en)}_{2} F_{2}\right]^{+}$ is less
intense than that of ci s - $\left[\operatorname{Co}(\operatorname{en})_2 \operatorname{F}_2\right]^+$ - Explain.
(d) The Brown ring compound $\{[Fe(H_2O)_5 NO]SO_4\}$ exhibits magnetic moment $(\mu) = 3.9 \text{BM}$. Find the oxidation state of Fe in this compound.
(a) Explain why OH^- is a weak field ligand than H_2O .
(b) The absorption spectrum of $\left[\text{Ti}(\text{H}_2\text{O})_6\right]^{3+}$ shows one unsymmetrical broad band — Explain.
(c) Ionic radius of $\left[V(H_2O)_6\right]^{2+}$ is larger than the
$\left[Mn(H_2O)_6\right]^{+2} - Explain. $ (2)
(d) F ⁻ is a weak field ligand whereas CN ⁻ is a strong field ligand. Explain on the basis of LFT.
(e) Why do actinides show higher oxidation state

than lanthanides?