Total pages: 3

PG (CBCS)

M.Sc. Semester-IV Examination, 2019

PHYSICS

PAPER: PHS-401

Full Marks: 40

Time: 2 Hours

Use Separate Answer Scripts for each unit

GROUP-A

PARTICLE PHYSICS

Marks-20

Answer question number 1 and any one from the rest

1.	Answer any five questions	5×2=10
	a) Classify the following reactions:	
	i) $\pi^0 \rightarrow p + \pi^-$	
	ii) $K^0 \rightarrow \pi^+ + \pi^-$	
	b) Explain spontaneous symmetry breaking in particle Physi	cs.
	c) What is G-parity? Where is it conserved?	
	d) $p^+ + \pi^- \to n^0 + \gamma + Q$	
	[Mass in MeV: $\pi^-(139)$, $p^+(938)$, $n^0(939)$]	
	Calculate the energy of the neutron produced.	
	e) If a Higg's boson of mass m_H moving with a speed $\beta = v$	/c decays into a
	pair of photons, then find the invariant mass of the photor	
	f) Find the dimension of adjoint representation of SU(N).	
	g) Show that $s+t+u=\sum_i m_i^2$ where the symbols have usual me	eaning.
	h) $P A^0 P^{-1} = \dots$	art and a
	$P \vec{A}(x) P^{-1} = \dots$	
	If $\mathcal{L}_{int} = -h \bar{\psi} \gamma_5 \psi \phi$, what is the dimension of h?	
2.	a) Show that $ K_0\rangle$ and $ \overline{K_0}\rangle$ are not eigen states of the operat	or CP. Construct
	eigen states of CP operation from linear superposition of $ K_0\rangle$ and $ \overline{K_0}\rangle$. Find the eigen values also. (5) b) Discuss how the intrinsic parity of π^- can be determined from the reaction	
	$\pi^-d \rightarrow n+n$	(5)

3. a) Prove that the quark model predicts the following cross-section relation

b) Using Young Tableaux method for SU(3) group show that

c) What is self energy? Explain with Feynman diagram.

 $\sigma(\Sigma^- n) = \sigma(pp) + \sigma(k^- n) - \sigma(\pi^- p)$

 $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus \overline{8} \oplus 1$

(2) (Turn Over)

(4)

(4)

GROUP-B STATISTICAL MECHANICS-II Marks-20

Answer question number 1 and any one from the rest.

1. Answer any five questions

 $5 \times 2 = 10$

- a) How is the paramagnetism of conduction electrons different from metallic paramagnetism?
- b) How does Landau level leads to the quantization of energy?
- c) Consider N independent spin $\frac{1}{2}$ particles in an external magnetic field. Each spin has a magnetic moment μ . What is the magnetisation of the spins as a function of the external magnetic field and temperature?
- d) The Bose-Einstein condensation temperature for a Rubidium gas (atomic weight 85.47) is $1.7 \times 10^{-23} K$. Calculate the number density of the condensate (N_A =6.023×10²³, k_B =1.381×10⁻²³ J/K).
- e) What do you mean by degenerate Fermi gas?
- f) Explain qualitatively the idea of Yang-Lee singularity for 1D Ising system.
- g) Using $\ln Z_G = -\sum_r \ln(1 \eta e^{-\beta \epsilon_l})$, show that the number of particle in the ground state is $N_0 = \frac{\eta}{1-\eta}$, where η is the fugacity.
- h) Explain why liquid helium does not solidify in normal atmospheric pressure.
- 2. a) Consider an ideal Fermi gas of N particles in a volume V and in a magnetic field H at temperature T=0. The energy of a particle is $\epsilon = \frac{p^2}{2m} \pm \mu_B H$, where μ_B is Bohr magneton. Give an expression for the chemical potential μ_0 in terms of the number of particles N for vanishing magnetic field.

Write down the Fermi momenta of the spins oriented parallel and anti-parallel respectively to the external magnetic field $H\neq 0$, Find the total energy of the spins oriented parallel and anti-parallel to the external magnetic field.

(4+2+2)

b) What is De Hass-van Alphan effect? What is the significance of this? (2)

3.

H= - J
$$\sum_{i=0}^{N} \sigma_i \sigma_{i+1} - h \sum_{i=0}^{N} \sigma_i$$

i) Find the partition function in the $N\rightarrow \infty$ limit.

(Turn Over)

ii) Hence show that the magnetisation of the system is

$$M = N \frac{\sinh \beta h}{\sqrt{\exp(-4\beta h) + \sinh^2(\beta h)}}$$

Also show that this model, in one dimension, does not exhibit any phase transition at finite temperature (T>0). (2+4)

b) Obtain an expression for the mean energy \bar{E} of the Ising model in 2D when the applied field is zero, using the simplest mean field approximation. Hence show that the heat capacity C_h has the behaviour:

$$C_h = 0$$
 for T>T_C
= 3Nk/2, for T < T_C

Comment on the nature of singularity at T_C.

(4)
