OORE C

Time: 2 Hour

Total Pages: 2

Full Marks: 40

PG CBCS

M.Sc. Semester-III Examination, 2019

Physics

Paper Code: PHS-302

Use Separate scripts for Group A& Group

Group A

(Molecular Spectroscopy & Laser Physics)

1. Answer any two of the following questions:

 $(2 \times 2 = 4)$

- a) The infra-red spectrum H¹Br⁷⁹ consists of a series of lines spaced 17 cm^{-1} apart. Find the moment of inertia of the molecule.
- b) What is Fortrat parabola?
- c) The intensity J=0 to J=1 is often not most intensed rotational line. Why?
- d) Which of the two molecules H₂O and D₂O will have smaller separation of lines in rotational spectra?

2. Answer any two of the following questions:

- a) Obtain an expression of rotational energy of a diatomic molecule taking it as a rigid rotator.
- b) Explain why intensity vary in a progression series corresponding to vibrational electronic transition.
- c) The 2886 cm⁻¹fundamental band of HCl can be shown fit in the empirical relation '

 $\nu = 2885.90 + 20.577m - 0.3034m^2$

Calculate the value of Be, Bo and B1.

Given $\alpha_c = 0.3312 \ cm^{-1}$

(4)

- d) Draw the energy level diagram of Ruby laser. What do you mean by Q switching in a laser.
- 3. Answer any one of the following questions:

 $(8 \times 1 = 8)$

a) Explain the origin of P and R branch corresponding to a diatomic vibrating rotator assuming Born-Oppenheimer Approximation. Draw the energy levels corresponding to these transitions.

(3+5)

b) Find the rotational fine structure vibrational electronic spectrum. Hence show the relation corresponding to different branches. Explain band origin and band head.

(P.T.O)

(2) Group B

(Nuclear Physics-I)

4. Answer any two of the following questions:

 $(2\times 2=4)$

Explain single mass parabola and double mass parabola.

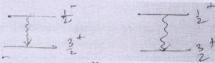
- b) Can a nucleus undergo $0^+ \rightarrow 0^+$ electromagnetic transition? Justify your answer.
- c) Using semi-empirical mass formula, find the atomic number of most stable nucleus. Explain which is most stable ${}_{2}\mathrm{He}^{6}, {}_{4}\mathrm{Be}^{6}, {}_{3}\mathrm{Li}^{6}.$
- d) Explain parity violation β -decay in Co^{60} experiment.

5. Answer any two of the following questions:

 $(4 \times 2 = 8)$

- a) Cl-33 decays by Positron emission with maximum energy of 4.3 MeV. Calculate radius of nucleus from this.
- b)Classify the following transition

$$^{17}\text{Fe} \rightarrow \,^{17}0 + e^+ + \nu \, (\frac{5}{2}^+ \rightarrow \frac{5}{2}^+)$$


- c) If the β decay spectrum is represented by N(E) dE $\propto \sqrt{E}(E_{max} E)$ dE
- Show that most intense energy occurs at $E=E_{max}/5$.
- d) A nucleus with mass number 292 undergo α emission. Calculate energy shared between the α particle and daughter nucleus.
- 6. Answer any one of the following questions:

 $(8 \times 1 = 8)$

- a) Draw the potential barrier faced by α particle which is emitted from a nuclens. Assuming the rectangular barrier find the expression for decay constant. (2+6)
- b) i) Find the type of gamma radiation:

$$\frac{1^+}{2} \to \frac{3^+}{2}$$
 and $1^- \to 0^+$. (3)

ii) Find the multipole character of radiation emitted for following transitions (3)

iii) Calculate spin parity of 17Cl38.

(2)