2018-1

MCC/18/M.Sc./Sem.III/PHS/1

Time: 2 Hours

LIBRI

Total Pages: 3

Full Marks: 40

PG CBCS

M.Sc. Semester-III Examination, 2019 M.Sc. PHYSICS

Paper Code: PHS-301

Use Separate scripts for Group A & Group B Group A

(Quantum Mechanics-III)

1) Answer any two questions of the following:

 $(2 \times 2 = 4)$

- a) Two identical spin 1/2 particles are enclosed in 1D infinite potential box of length L with rigid walls at x=0 and x=L. Find first excited state energy and wave function if two particle system is in a single spin state.
- b) Suppose in a strange Universe the electron spin 3/2 rather spin 1/2 but all other physics are the same as in our Universe. What are the atomic numbers of the lightest two inert gases?
- c) Show that in an electromagnetic radiation field, the electric field interacts more strongly with the atom than the magnetic term and the perturbing Hamiltonian is $eE_0 \cos \omega t \ \hat{e} \cdot \vec{r}$, \hat{e} is the polarization vector.
- d) Find the phase shift δ_0 for s wave by the potential $V(r) = \infty \ for \ 0 \le r \le a$ =0, r>a

2) Answer any two questions of the following:

 $(4 \times 2 = 8)$

- a) Show that the s matrix is unitary when the Hamiltonian is Hermitian.
- b) A Hydrogen atom in the ground state is subjected to an electric field E = $E_0 e^{-t/\tau}$, t > 0 along z axis. Calculate the probability for transition to the |210> state.
- c) Distinguish between adiabatic and sudden approximation in time dependent perturbation theory.
- d) Find the scattering cross-section for scattering of a particle of mass m by the sfunction potential.

$$V(\vec{r}) = g\delta(\vec{r})$$

where g = constant

3) Answer any one questions:

 $(8 \times 1 = 8)$

- a) i) Two electrons move in a central field. Consider the electrostatic interaction $\frac{e^2}{|\vec{r_1}-\vec{r_2}|}$ between the electrons as a perturbation. Find the first order energy shifts for the states of the 1s2s configuration in terms of unperturbed quantities and matrix elements of the interaction $\frac{e^2}{|\vec{r_1} - \vec{r_2}|}$
- ii) Derive Fermi's golden rule, in case of harmonic perturbation. (4) (P.T.O.)

O 2017 If $V(r) = \frac{-Ze^2}{2R} \left(3 - \frac{r^2}{R^2}\right) for \ 0 < r < R$ 2017 Show that form factor F(q) for high energy elastic scattering is given by

 $F(q) = \left(\frac{3}{q^2 R^2}\right) \left(\frac{\sin qR}{qR} - \cos qR\right)$

where q = momentum transfer wave vector.

(5)

ii) Obtain the expression of a plane wave in terms of spherical wave.

(3)

Group B

(Statistical Mechanics - I)

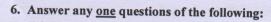
4. Answer any two questions of the following:

 $(2 \times 2 = 4)$

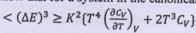
- a) An ensemble of N three level system with energies $E=-\epsilon_0$, 0, ϵ_0 is in thermal equilibrium at temperature T. If $\beta=(k_BT)^{-1}$ and $\beta\epsilon_0=2$, find the probability of finding the system in the level $\epsilon=0$.
- b) Define pure state. Prove that a pure state vector can not change into a non-pure or mixed state.
- c) If for N localized distinguishable freely oriented dipoles $E = -\sum_{l=1}^{2} \overrightarrow{\mu_{l}} \cdot H$ Find the canonical partition function.
- d) What do you understand by negative temperature? Cite at least one of its application.

5. Answer any two questions of the following:

 $(4 \times 2 = 8)$


- a) The Hamiltonian of a system of N non-interacting spin ½ particle is $H=-\mu_0 B \sum S_i^z$, where $S_i^z=\pm 1$ are components of ith spin along an external magnetic field B. At a temperature T such that $\exp(\frac{\mu_0 B}{k_B T})=2$ Show that the specific heat per particle is $\frac{16}{25}k_b(\ln 2)^2$ (4)
- b) If ρ_1 and ρ_2 be a pair of density matrixes, prove that $\hat{\rho} = r \widehat{\rho_1} + (1-r) \widehat{\rho_2}$ is a density matrix for all real number r such that $0 \le r \le 1$ (4)
- c) The density matrix of a system is

$$\rho = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ and } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$


Calculate ΔA .

d) Calculate the expression of specific heat for a two dimensional quantum harmonic oscillator. (4)

(P.T.O.)

a) i) Show that for a system in the canonical ensemble

- (4)
- ii) In a spin system 75% spin is in upward direction and 25% spin in downward direction. Calculate density matrix and also calculate Px, Py, Pz (Polarization vector).
- b) i) Calculate the density matrix for a particle of mass m in an infinite potential box of volume V in co-ordinate representation.
 - ii) Prove that grand potential

$$\Omega = U - TS - \mu N$$

where the symbols have usual meanings.

(3)