PG (NEW) CBCS M.Sc. Semester-II Examination, 2019 PHYSICS PAPER: PHS 202

Full Marks: 40

Time: 2 Hours

Use Separate Answer Scripts for each unit

PHS 202.1:

SOLID STATE II

Marks-20

(Answer question number 1, 2 and any ONE from rest.)

1. Answer any two.

(Marks: 2×2=4)

- a) What are type I and type II superconductors?
- b) What is fluxoid? What are its applications?
- c) Write down Langevin-Debye equation in dielectric and hence plot $\varepsilon_0(\varepsilon_r-1)$ vs. 1/T.
- d) How is dielectric constant related to electric susceptibility? What are its sources?
- 2. Answer any two.

(Marks: 4×2=8)

- a) Explain two fluid model in superconductor.
- b) What is DC Josephson effect? What is SQUID?
- Find an expression for the local field that is responsible for polaring molecules or atoms of a solid.
- d) What is the magnetic susceptibility of a superconductor? Describe the effect of magnetic field on superconductor.
- 3. a) The crystal of NaCl has static dielectric constant 5.6 and optical index of refraction 1.5. Calculate the percentage contribution of ionic polarizability. (Marks: 3)
 - b) Give a schematic sketch of the variation of the total polarizability of a dielectric as a function of frequency. Explain the physical origin of the various contributions and relevant frequency ranges.

 (Marks: 5)

(Turn Over)

a) What are high T_C superconductor? Give examples. Show that how the
London equations lead to the Missner effect and flux penetration through thin films of
superconductor. (Marks: 2+4=6)

b) How does the total polarizability depend on frequency?

(Marks: 2)

PHS 202.2:

SEMICONDUCTOR PHYSICS

Marks-20

(Answer question number 1, 2 and any ONE from rest.)

1. Answer any two.

(Marks: 2×2=4)

- a) Show the variation of $\ln \phi$ vs. 1/T plot (from low temperature to high temperature range) for a non-degeneric semiconductor.
- b) Find an expression of barrier potential of a p-n junction under equilibrium condition.
- c) What is meant by direct and indirect recombination?
- d) Explain what is meant by ohmic contact?

2. Answer any two.

(Marks: 4×2=8)

- a) Prove that Fermi level remains invariant in a p-n junction under equilibrium condition.
- b) Derive Einstein's relation for holes in a p-n junction under equilibrium condition.
- c) Find an expression of open circuit voltage and short circuit current for a p-n junction solar cell.
- d) Find the neutrality condition when a semiconductor is doped both with donor as well as acceptor impurity.
- 3. What is meant by linearly graded junction? Find an expression of junction capacitance of linearly graded junction. (Marks: 2+6=8)
- 4. Find the expression of carrier concentration in a non-degenerate semiconductor. Clearly distinguish non-degenerate and degenerate semiconductor. (Marks: 6+2=8)
